GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 13 (2). pp. 193-204.
    Publication Date: 2017-05-10
    Description: Stable oxygen and-carbon isotope and sedimentological-paleontological investigations supported by accelerator mass spectrometry (14)C datings were carried out on cores from north of 85 degrees N in the eastern central Arctic Ocean. Significant changes in accumulation rates, provenance of ice-rafted debris (IRD), and planktic productivity over the past 80,000 years are documented. During peak glacials, i.e., oxygen isotope stages 4 and 2, the Arctic Ocean was covered by sea ice with decreased seasonal variation, limiting planktic productivity and bulk sedimentation rates. In early stage 3 and during Termination I, major deglaciations of the circum-Arctic regions caused lowered salinities and poor oxygenation of central Arctic surface waters. A meltwater spike and an associated IRD peak dated to similar to 14-12 (14)C ka can be traced over the southern Eurasian Basin of the Arctic Ocean. This event was associated with the early and rapid deglaciation of the marine-based Barents Sea Ice Sheet. A separate Termination Ib meltwater event is most conspicuous in the central Arctic and is associated with characteristic dolomitic carbonate IRD. This lithology suggests an origin of glacial ice from northern Canada and northern Greenland where lower Paleozoic platform carbonates crop extensively out.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Hydrographic and stable isotope (δ18O) data from 4 summer surveys in the Laptev Sea are used to derive fractions of sea-ice meltwater and river water. Sea-ice meltwater fractions are found to be correlated to river water fractions. While initial heat of river discharge is too small to melt the observed 0-158 km3 of sea-ice meltwater, arctic rivers contain suspended particles (SPM) and colored dissolved organic material (CDOM) that preferentially absorb solar radiation. Accordingly heat content in surface waters is correlated to river water fractions. But in years when river water is largely absent within the surface layer absolute heat content values increase to considerably higher values with extended exposure time to solar radiation and sensible heat. Nevertheless no net sea-ice melting is observed on the shelf in years when river water is largely absent within the surface layer. The total freshwater volume of the central-eastern Laptev Sea (72-76°N, 122-140°E) varies between ~1000-1500 km3 (34.92 reference salinity). It is dominated by varying river water volumes (~1300-1800 km3) reduced by an about constant freshwater deficit (~350-400 km3) related to sea-ice formation. Net sea-ice melt (~109-158 km3) is only present in years with high river water budgets. Intermediate to bottom layer (〉25 salinities) contain ~60% and 30% of the river budget in years with low and high river budgets, respectively. The average mean residence time of shelf waters was ~2-3 years during 2007-2009.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-02
    Description: Near-surface sediments from the equatorial east Atlantic and the Norwegian Sea exhibit pronounced shear strength maxima in profiles from the peak Holocene and Pleistocene. These semi-indurated layers start to occur at 8–102 cm below the sediment surface and can be explained neither by the modal composition nor by the effective overburden pressure of the sediments. However, scanning electron microscope and microprobe data exhibit micritic crusts and crystal carpets, which are clearly restricted to (undisturbed) samples from indurated layers and form a manifest explanation for their origin. The minerals precipitated comprise calcite, aragonite, and in samples more proximal to the African continent SiO2 needles, and needles of as yet unidentified K-Mg-Fe-Al silicates, crusts of which dominate the indurated layers in the Norwegian Sea. By their stratigraphic position in deep-sea sediments the carbonate-based shear strength maxima are tentatively ascribed to dissolved adjacent pteropod layers from the early Holocene and hence to short-lived no-analogue events of early diagenesis. Possibly, they have been controlled by a reduced organic carbon flux, leading to increased aragonite preservation in the deep sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-10
    Description: Five years of oxygen isotope and hydrological surveys reveal interannual variations in the inventory and distribution of river water over the Laptev Sea. In 2007, 2009, and 2010 relatively low amounts of river water (≤1500 km3) were found and were mostly located in the southeastern Laptev Sea. In 2008 and 2011, high amounts of river water (~1600 km3 and ~2000 km3) were found, especially in the central and northern part of the shelf, suggesting a northward export of this water. This temporal pattern is coherent with the summer Arctic Dipole index that was higher in 2008 and 2011. Our results suggest that the Arctic Dipole might influence the export of river water from the Laptev Sea. Moreover, the river water inventory in the Laptev Sea seems related to the freshwater content of the Arctic Ocean with a 2 years lag.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-14
    Description: Combining field measurements, remote sensing and numerical modelling, a key site for ice entrainment and basinwide dispersal of sediments by sea ice has been identified near the New Siberian Islands. The total ice-bound sediment export of 18.5 x 10(6) t for an entrainment event documented in 1994/95 is of the same order of magnitude as annual sediment supply to the deep sea sector of the Eurasian Arctic and the Greenland Sea. Satellite imagery and ancillary data indicate that ice advection from this source may play an important role in sedimentation downstream in the Transpolar Drift.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Three long sediment cores from the Makarov Basin have been subjected to detailed paleomagnetic and rock magnetic analyses. Investigated sediments are dominated by normal polarity including short reversal excursions, indicating that most of the sediments are of Brunhes age. In general, the recovered sediments show only low to moderate variability in concentration and grain size of the remanence-carrying minerals. Estimations of relative paleointensity variations yielded a well-documented succession of pronounced lows and highs that could be correlated to published reference curves. However, together with five accelerator mass spectrometry C-14 ages and an incomplete Be-10 record, still two different interpretations of the paleomagnetic data are possible, with long-term sedimentation rates of either 1.3 or 4 cm kyr(-1) However, both models implicate highly variable sedimentation rates of up to 10 cm kyr(-1), and abrupt changes in rock magnetic parameters might even indicate several hiatuses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-02-27
    Description: Summer hydrographic data (1920–2009) show a dramatic warming of the bottom water layer over the eastern Siberian shelf coastal zone (〈10 m depth), since the mid-1980s, by 2.1°C. We attribute this warming to changes in the Arctic atmosphere. The enhanced summer cyclonicity results in warmer air temperatures and a reduction in ice extent, mainly through thermodynamic melting. This leads to a lengthening of the summer open-water season and to more solar heating of the water column. The permafrost modeling indicates, however, that a significant change in the permafrost depth lags behind the imposed changes in surface temperature, and after 25 years of summer seafloor warming (as observed from 1985 to 2009), the upper boundary of permafrost deepens only by ∼1 m. Thus, the observed increase in temperature does not lead to a destabilization of methane-bearing subsea permafrost or to an increase in methane emission. The CH4 supersaturation, recently reported from the eastern Siberian shelf, is believed to be the result of the degradation of subsea permafrost that is due to the long-lasting warming initiated by permafrost submergence about 8000 years ago rather than from those triggered by recent Arctic climate changes. A significant degradation of subsea permafrost is expected to be detectable at the beginning of the next millennium. Until that time, the simulated permafrost table shows a deepening down to ∼70 m below the seafloor that is considered to be important for the stability of the subsea permafrost and the permafrost-related gas hydrate stability zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Hydrographic and stable oxygen isotope (H218O/H216O) sampling was carried out within the West New Siberian (WNS) coastal polynyas in the southern Laptev Sea in late winters 2008 and 2009. The impact of sea-ice formation on the water column was quantified by a salinity/{lower case delta}18O mass balance. Several stations had vertically homogeneous physical properties in April/May 2008 and featured polynya-formed local bottom water with elevated signals of brine released during sea-ice formation and elevated fractions of river water. The polynya-formed bottom water was fresher than surrounding bottom waters. At other stations salinity/{lower case delta}18O correlation showed well defined mixing lines for bottom and surface layers. In March/April 2009 surface waters were strongly influenced by Lena River water and local polynya activity with elevated brine signals reached to intermediate depth, but did not penetrate the bottom layer in the highly stratified water column. Inventory values of sea-ice formation were comparable in both years, but freshwater distributions from the preceding summers were different. Therefore, the observed difference in the impact of polynya activity on the water column is not primarily controlled by the amount of sea-ice formed during winter but by preconditioning from the preceding summer. Only in years when the river plume is mostly absent in the polynya region stratification is weak and allows winter sea-ice formation to reach the bottom layer. Thus summer stratification controls the influence of local polynya water on the shelf's bottom hydrography and, as bottom water is exported, impacts on the source water of shelf-derived halocline waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-06-26
    Description: Combined salinity and δ18O data from summer 2007 reveal a significant change in brine production in the Laptev Sea relative to summer 1994. The distribution of river water and brine enriched waters on the Laptev Sea shelf is derived based on mass balance calculations using salinity and δ18O data. While in 1994 maximal influence of brines is seen within bottom waters [Bauch et al., 2009a], in 2007 the influence of brines is highest within the surface layer and only a moderate influence of brines is observed in the bottom layer. In contrast to 2007, salinity and δ18O data from summer 1994 clearly identify a locally formed brine enriched bottom water mass as mixing endmember between surface layer and inner shelf waters on one side and with higher salinity water from the outer Laptev Sea on the other side. In 2007 the brine enriched waters are predominantly part of the surface regime and the mixing endmember between surface layer and outer shelf waters is replaced by a relatively salty bottom water mass. This relatively salty bottom water probably originates from the western Laptev Sea. The inverted distribution of brines in the water column in 2007 relative to 1994 suggests a less effective winter sea-ice formation in winter 2006/2007 combined with advection of more saline waters from the western Laptev Sea or the outer shelf precedent to 1 the climatically extreme summer 2007. The observed changes result in an altered export of waters from the Laptev Sea to the Arctic Ocean halocline.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: A multiyear mooring record (2007–2014) and satellite imagery highlight the strong temperature variability and unique hydrographic nature of the Laptev Sea. This Arctic shelf is a key region for river discharge and sea ice formation and export and includes submarine permafrost and methane deposits, which emphasizes the need to understand the thermal variability near the seafloor. Recent years were characterized by early ice retreat and a warming near-shore environment. However, warming was not observed on the deeper shelf until year-round under-ice measurements recorded unprecedented warm near-bottom waters of +0.6°C in winter 2012/2013, just after the Arctic sea ice extent featured a record minimum. In the Laptev Sea, early ice retreat in 2012 combined with Lena River heat and solar radiation produced anomalously warm summer surface waters, which were vertically mixed, trapped in the pycnocline, and subsequently transferred toward the bottom until the water column cooled when brine rejection eroded stratification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...