GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-02-28
    Description: Seismostratigraphy, coring, and logging while drilling during Integrated Ocean Drilling Program Expeditions 319, 322, and 333 (Sites C0011/C0012) show three Miocene submarine fans in the NE Shikoku Basin, with broadly coeval deposits at Ocean Drilling Program Site 1177 and Deep Sea Drilling Project Site 297 (NW Shikoku Basin). The sediment dispersal patterns have major implications for paleogeographies at that time. The oldest, finer-grained (Kyushu) fan has sheet-like geometry; quartz-rich flows were fed mostly from an ancestral landmass in the East China Sea. During prolonged hemipelagic mud deposition at C0011-C0012 (similar to 12.2 to 9.1 Ma), sand supply continued at Sites 1177 and 297. Sand delivery to much of the Shikoku Basin halted during a phase of sinistral strike slip to oblique plate motion, after which the Daiichi Zenisu Fan (similar to 9.1 to 8.0 Ma) was fed by submarine channels. The youngest fan (Daini Zenisu; similar to 8.0 to 7.6 Ma) has sheet-like geometry with thick-bedded, coarse-grained pumiceous sandstones. The pumice fragments were fed from a mixed provenance that included the collision zone of the Izu-Bonin and Honshu Arcs. The shift from channelized to sheet-like flows was favored by renewal of relatively rapid northward subduction, which accentuated the trench as a bathymetric depression. Increased sand supply appears to correlate with long-term eustatic lowstands of sea level. The stratigraphic position and 3-D geometry of the sandbodies have important implications for subduction-related processes, including the potential for focused fluid flow and fluid overpressures above and below the plate boundary fault: In sheet-like sands, pathways for fluid flow have greater horizontal permeability compared with those in channel sands.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...