GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-07-02
    Description: Seawater samples were collected biweekly from the northern Gulf of Aqaba, Red Sea, for Phytoplankton analysis during the period May 1998 to October 1999. Microscopic counts and HPLC methods were employed. Procaryotic and eucaryotic ultraplankton dominated throughout most of the year, with larger nano- and microplankton making up only 5% of the photosynthetic biomass. Moderate seasonal variations in the 0–125 m integrated Chl a contrasted with a pronounced seasonal succession of the major taxonomic groups, reflecting the changes in the density stratification of the water column: Prochlorococcus dominated during the stratified summer period and were almost absent in winter. Chlorophyceae and Cryptophyceae were dominant during winter mixing but scarce or absent during summer. Diatoms and Synechococcus showed sharp and moderate biomass peaks in late winter and spring respectively, but remained at only low Chl a levels for the rest of the year. Chrysophyceae, Prymnesiophyceae and the scarce Dinophyceae showed no clear seasonal distribution pattern. The implications of alternating procaryotic and eucaryote dominated algal communities for the Red Sea pelagic food web are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-16
    Description: Coralline algae (Corallinales, Rhodophyta) that form rhodoliths are important ecosystem engineers and carbonate producers in many polar coastal habitats. This study deals with rhodolith communities from Floskjeret (78°18′N), Krossfjorden (79°08′N), and Mosselbukta (79°53′N), off Spitsbergen Island, Svalbard Archipelago, Norway. Strong seasonal variations in temperature, salinity, light regime, sea-ice coverage, and turbidity characterize these localities. The coralline algal flora consists of Lithothamnion glaciale and Phymatolithon tenue. Well-developed rhodoliths were recorded between 27 and 47 m water depth, while coralline algal encrustations on lithoclastic cobbles were detected down to 77 m water depth. At all sites, ambient waters were saturated with respect to both aragonite and calcite, and the rhodolith beds were located predominately at dysphotic water depths. The rhodolith-associated macrobenthic fauna included grazing organisms such as chitons and echinoids. With decreasing water depth, the rhodolith pavements were regularly overgrown by non-calcareous Polysiphonia-like red algae. The corallines are thriving and are highly specialized in their adaptations to the physical environment as well as in their interaction with the associated benthic fauna, which is similar to other polar rhodolith communities. The marine environment of Spitsbergen is already affected by a climate-driven ecological regime shift and will lead to an increased borealization in the near future, with presently unpredictable consequences for coralline red algal communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-15
    Description: Increasing atmospheric mixing ratios of CO2 have already lowered surface ocean pH by 0.1 units compared to preindustrial values and pH is expected to decrease an additional 0.3 units by the end of this century. Pronounced physiological changes in some phytoplankton have been observed during previous CO2 perturbation experiments. Marine microorganisms are known to consume and produce climate-relevant organic gases. Concentrations of (CH3)2S (DMS) and CH2ClI were quantified during the Third Pelagic Ecosystem CO2 Enrichment Study. Positive feedbacks were observed between control mesocosms and those simulating future CO2. Dimethyl sulfide was 26% (±10%) greater than the controls in the 2x ambient CO2 treatments, and 18% (±10%) higher in the 3xCO2 mesocosms. For CH2ClI the 2xCO2 treatments were 46% (±4%) greater than the controls and the 3xCO2 mesocosms were 131% (±11%) higher. These processes may help contribute to the homeostasis of the planet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-22
    Description: Concentrations of a cyanobacterial toxin, nodularin, were measured in the Baltic Sea in 1998 and 1999. Statistical associations of nodularin concentrations with environmental factors were tested by multiple regression analysis. To reveal the toxin-producing organism, colonies of Aphanizomenon and filaments of Nodularia were picked and analyzed for peptide toxins. It was also investigated whether there was an association with zooplankton and Nodularia. All the measured seston samples contained nodularin, but other toxins were not detected by the HPLC analysis. In both years, the highest nodularin concentrations were found at the surface water layer. The nodularin concentrations were positively correlated with silicate concentrations in water. High concentrations of silica in surface water may indicate recent upwelling, which in turn renders surface water rich in nutrients. This upwelling is likely to intensify cyanobacterial growth and toxin production, which may explain this rather unexpected result. The picked Aphanizomenon colonies did not contain nodularin and the dissolved nodularin concentrations were below detection limit. Thus it was concluded that most of the nodularin was bound to Nodularia cells. The abundances of zooplankton (copepods, rotifers, and cladocerans) were unrelated to Nodularia, but were positively associated with Aphanizomenon.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...