GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (68 Blatt = 3,7 MB)
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Dissertation ; Western Interior Seaway ; Marine Sedimente ; Klimaveränderung ; Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource ( 236Seiten = 11MB) , Ill., graph. Darst., Kt.
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: We investigated the onset and development of Cretaceous Oceanic Anoxic Event 2 (OAE2) in a newly drilled core (SN degrees 4) from the Tarfaya Basin (southern Morocco), where this interval is unusually expanded. High-resolution (centimeter-scale equivalent to centennial) analysis of bulk organic and carbonate stable isotopes and of carbonate and organic carbon content in combination with XRF scanner derived elemental distribution reveal that the ocean-climate system behaved in a highly dynamic manner prior to and during the onset of OAE2. Correlation with the latest orbital solution indicates that the main carbon isotope shift occurred during an extended minimum in orbital eccentricity (similar to 400 kyr cycle). Shorter-term fluctuations in carbonate and organic carbon accumulation and in sea level related terrigenous discharge were predominantly driven by variations in orbital obliquity. Negative excursions in organic and carbonate delta C-13 preceded the global positive delta C-13 shift marking the onset of OAE2, suggesting injection of isotopically depleted carbon into the atmosphere. The main delta C-13 increase during the early phase of OAE2 in the late Cenomanian was punctuated by a transient plateau. Maximum organic carbon accumulation occurred during the later part of the main delta C-13 increase and was associated with climate cooling events, expressed as three consecutive maxima in bulk carbonate delta O-18. The extinctions of the thermocline dwelling keeled planktonic foraminifers Rotalipora greenhornensis and Rotalipora cushmani occurred during the first and last of these cooling events and were likely associated with obliquity paced, ocean-wide expansions, and intensifications of the oxygen minimum zone, affecting their habitat space on a global scale.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The paleoclimatology and paleoceanology of the Late Jurassic and Early Cretaceous are of special interest because this was a time when large amounts of marine organic matter were deposited in sediments that have subsequently become petroleum source rocks. However, because of the lack of outcrops, most studies have concentrated on low latitudes, in particular the Tethys and the “Boreal Realm,” where information has been based largely on material from northwest Germany, the North Sea, and England. These areas were all south of 40°N latitude during the Late Jurassic and Early Cretaceous. We have studied sediment samples of Kimmeridgian (∼154 Ma) to Barremian (∼121 Ma) age from cores taken at sites offshore mid-Norway and in the Barents Sea that lay in a narrow seaway connecting the Tethys with the northern polar ocean. During the Late Jurassic-Early Cretaceous these sites had paleolatitudes of 42–67°N. The Late Jurassic-Early Cretaceous sequences at these sites reflect the global sea-level rise during the Volgian-Hauterivian and a climatic shift from warm humid conditions in Volgian times to arid cold climates in the early Hauterivian. The sediments indicate orbital control of climate, reflected in fluctuations in the clastic influx and variations in carbonate and organic matter production. Trace element concentrations in the Volgian-Berriasian sediments suggest that the central part of the Greenland-Norwegian Seaway might have had suboxic bottom water beneath an oxic water column. Both marine and terrigenous organic matter are present in the seaway sediments. The Volgian-Berriasian strata have unusually high contents of organic carbon and are the source rocks for petroleum and gas fields in the region. The accumulation of organic carbon is attributed to restricted conditions in the seaway during this time of low sea level. It might be that the Greenland-Norwegian segment was the deepest part of the transcontinental seaway, bounded at both ends by relatively shallow swells. The decline in organic matter content of the sediments in the Valanginian-Hauterivian indicates greater ventilation and more active flow through the seaway as the sea level rose. The same benthic foraminifera assemblages are encountered throughout the seaway. Endemic assemblages of arenaceous foraminifera in the Volgian-Berriasian give way to more diverse and cosmopolitan Valanginian-Hauterivian benthic communities that include calcareous species. The foraminiferal assemblages also suggest low oxygen content bottom waters during the earlier Cretaceous, changing to more fully oxygenated conditions later. The calcareous nannoplankton, particularly Crucibiscutum salebrosum, which is rare at low latitudes and abundant in high latitudes, reflect the meridional thermal gradient. They indicate that the Greenland-Norwegian segment of the seaway was north of a subtropical frontal zone that acted as a barrier between the Tethyan and Boreal Realms. This implies the existence of stable climatic belts during the early Valanginian and Hauterivian, significant meridional temperature gradients, and moderate “ice house” conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-10
    Description: An 8 million year record of subtropical and midlatitude shelf-sea temperatures, derived from oxygen isotopes of well-preserved brachiopods from a variety of European sections, demonstrates a long-term Cenomanian temperature rise (16–20°C, midlatitudes) that reached its maximum early in the late Turonian (23°C, midlatitudes). Superimposed on the long-term trend, shelf-sea temperatures vary at shorter timescales in relation to global carbon cycle perturbations. In the mid-Cenomanian and the late Turonian, two minor shelf-sea cooling events (2–3°C) coincide with carbon cycle perturbations and times of high-amplitude sea level falls. Although this evidence supports the hypothesis of potential glacioeustatic effects on Cretaceous sea level, the occurrence of minimum shelf-sea temperatures within transgressive beds argues for regional changes in shelf-sea circulation as the most plausible mechanism. The major carbon cycle event in the latest Cenomanian (oceanic anoxic event 2) is accompanied by a substantial increase in shelf-sea temperatures (4–5°C) that occurred ∼150 kyr after the commencement of the δ13C excursion and is related to the spread of oceanic conditions in western European shelf-sea basins. Our oxygen isotope record and published δ18O data of pristinely preserved foraminifera allow the consideration of North Atlantic surface water properties in the Cenomanian along a transect from the tropics to the midlatitudes. On the basis of fossil-derived δ18O, estimated δw ranges, and modeled salinities, temperature-salinity-density ranges were estimated for tropical, subtropical, and midlatitude surface waters. Accordingly, the Cenomanian temperate shelf-seas waters have potentially the highest surface water density and could have contributed to North Atlantic intermediate to deep waters in the preopening stage of the equatorial Atlantic gateway.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: During the Cretaceous, there were two factors that had important influences on the East Asian climate, the East Asian coastal mountains and Earth's orbital cycling. An important question is how the coastal mountains modulated the variability of East Asian climate over orbital timescales. Here, we perform simulations with the coastal mountains of 0, 2, and 4 km high and three orbital configurations to answer the question. Our results show that a mountain range at the East Asian coast can amplify the impacts of orbital forcing on East Asian climate. Specifically, precipitation over the Songliao Basin in Northeastern China has significant changes as the coastal mountain range is about 4 km high. Combining our simulation results with orbitally‐controlled sedimentary deposits from the Songliao Basin, we conclude that the altitude of the coastal mountain range was very likely higher than 2 km in the Late Cretaceous. Plain Language Summary Tectonic events and solar insolation are the two important factors impacting variations of the climate system in the geological past. Regional climate responses to variations in the radiation from the sun over 10 4 –10 5 years were often magnified or dampened by tectonic events. Cretaceous sedimentary records in East Asia suggest that East Asian climate was influenced by the solar insolation. Geological evidence showed that a mountain range existed along the East Asian coast then. Would this mountain range modulate impacts of solar insolation on East Asian climate? Our modeling results show that the influence of solar insolation on East Asian climate can be amplified by the coastal mountain range, depending on the mountain elevation. When the coastal mountain range is ∼2 km high, the amplification effects become significant. When its altitude reaches ∼4 km, the response of East Asian climate to solar insolation is considerably strengthened, and such a condition is supported by the rhythm induced by the climate variation due to solar insolation archived in the Cretaceous strata in the Songliao Basin. Thus, we speculate that the East Asian coastal mountains might have reached an altitude more than 2 km in the Late Cretaceous. Key Points East Asian climate was sensitive to orbital forcing in the Late Cretaceous East Asian coastal mountains amplified orbital forcing on East Asian climate variability East Asian coastal mountains were likely higher than 2 km in the Late Cretaceous
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The East Asian coastal mountains have been in place during the Late Cretaceous times, thus substantially influencing the Asian climate. So far, their altitude is uncertain. Here we investigate the influence of such mountains on Asian climate using an atmosphere-ocean general circulation model, Community Earth System Model version 1.2.2. Simulation results show that extensive deserts would develop over the eastern part of the East Asia if the altitude of the coastal mountains was greater than 2 km. This is due to the pumping effect of the coastal mountains which deprives the moisture from the East Asian interior during summer and autumn, leading to less precipitation and greater potential evapotranspiration. The existence of extensive desert areas would be more consistent with the presented Asian paleoenvironmental reconstructions. Therefore, our results independently indicate that the altitude of the coastal mountains had attained 2 km or more by the early Late Cretaceous.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-22
    Description: Carbonate buildups and mounds are impressive biogenic structures throughout Earth history. In the recent NE Atlantic, cold-water coral (CWC) reefs form giant carbonate mounds of up to 300 m of elevation. The expansion of these coral carbonate mounds is paced by climatic changes during the past 2.7 Myr. Environmental control on their development is directly linked to controls on its main constructors, the reef-building CWCs. Seawater density has been identified as one of the main controlling parameter of CWC growth in the NE Atlantic. One possibility is the formation of a pycnocline above the carbonate mounds, which is increasing the hydrodynamic regime, supporting elevated food supply, and possibly facilitating the distribution of coral larvae. The potential to reconstruct past seawater densities from stable oxygen isotopes of benthic foraminifera has been further developed: a regional equation gives reliable results for three different settings, peak interglacials (e.g., Holocene), peak glacials (e.g., Last Glacial Maximum), and intermediate setting (between the two extremes). Seawater densities are reconstructed for two different NE Atlantic CWC carbonate mounds in the Porcupine Seabight indicating that the development of carbonate mounds is predominantly found at a seawater density range between 27.3 and 27.7 kg m−3 (σΘ notation). Comparable to recent conditions, we interpret the reconstructed density range as a pycnocline serving as boundary layer, on which currents develop, carrying nutrition and possibly coral larvae. The close correlation of CWC reef growth with reconstructed seawater densities through the Pleistocene highlights the importance of pycnoclines and intermediate water mass dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-22
    Description: High-latitude cold-water coral (CWC) reefs are particularly susceptible due to enhanced CO2 uptake in these regions. Using precisely dated (U/Th) CWCs (Lophelia pertusa) retrieved during research cruise POS 391 (Lopphavet 70.6°N, Oslofjord 59°N) we applied boron isotopes (δ11B), Ba/Ca, Li/Mg and U/Ca ratios to reconstruct the environmental boundary conditions of CWC reef growth. The sedimentary record from these CWC reefs reveals a lack of corals between ∼ 6.4 and 4.8 ka. The question remains if this phenomenon is related to changes in the carbonate system or other causes. The initial postglacial setting had elevated Ba/Ca ratios, indicative of meltwater fluxes showing a decreasing trend towards cessation at 6.4 ka with a oscillation pattern similar to continental glacier fluctuations. Downcore U/Ca ratios reveal an increasing trend, which is outside the range of modern U/Ca variability in L. pertusa, suggesting changes of seawater pH near 6.4 ka. The reconstructed BWT at Lopphavet reveals a striking similarity to Barent Sea-Surface and sub-Sea-Surface-Temperature records. We infer that meltwater pulses weakened the North Atlantic Current system resulting in southward advances of cold and CO2 rich Arctic waters. A corresponding shift in the δ11B record from ∼ 25.0‰ to ∼ 27.0 ‰ probably implies enhanced pH-up regulation of the CWCs due to the higher pCO2 concentrations of ambient seawater, which hastened Mid-Holocene CWC reef decline on the Norwegian Margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...