GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (8)
  • Ernst & Sohn  (5)
  • Forschungszentrum Jülich GmbH  (4)
  • 1
    Publication Date: 2020-06-29
    Description: Seafloor seepage of hydrocarbon-bearing fluids has been identified in a number of marine forearcs. However, temporal variations in seep activity and the structural and tectonic parameters that control the seepage often remain poorly constrained. Subduction-zone earthquakes for example, are often discussed to trigger seafloor seepage but causal links that go beyond theoretical considerations have not yet been fully established. This is mainly due to the inaccessibility of offshore epicentral areas, the infrequent occurrence of large earthquakes, and challenges associated with offshore monitoring of seepage over large areas and sufficient time periods. Here, we report visual, geochemical, geophysical, and modelling results and observations from the Concepción Methane Seep Area (offshore Central Chile) located in the rupture area of the 2010 Mw. 8.8 Maule earthquake. High methane concentrations in the oceanic water column and a shallow sub-bottom depth of sulfate penetration indicate active methane seepage. The stable carbon isotope signature of the methane and hydrocarbon composition of the released gas indicate a mixture of shallow-sourced biogenic gas and a deeper sourced thermogenic component. Pristine fissures and fractures observed at the seafloor together with seismically imaged large faults in the marine forearc may represent effective pathways for methane migration. Upper-plate fault activity with hydraulic fracturing and dilation is in line with increased normal Coulomb stress during large plate-boundary earthquakes, as exemplarily modelled for the 2010 earthquake. On a global perspective our results point out the possible role of recurring large subduction-zone earthquakes in driving hydrocarbon seepage from marine forearcs over long timescales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 119 (10). pp. 6918-6932.
    Publication Date: 2018-02-26
    Description: Continental shelves are predominately (~70%) covered with permeable, sandy sediments. While identified as critical sites for intense oxygen, carbon, and nutrient turnover, constituent exchange across permeable sediments remains poorly quantified. The central North Sea largely consists of permeable sediments and has been identified as increasingly at risk for developing hypoxia. Therefore, we investigate the benthic O2 exchange across the permeable North Sea sediments using a combination of in situ microprofiles, a benthic chamber, and aquatic eddy correlation. Tidal bottom currents drive the variable sediment O2 penetration depth (from ~3 to 8 mm) and the concurrent turbulence-driven 25-fold variation in the benthic sediment O2 uptake. The O2 flux and variability were reproduced using a simple 1-D model linking the benthic turbulence to the sediment pore water exchange. The high O2 flux variability results from deeper sediment O2 penetration depths and increased O2 storage during high velocities, which is then utilized during low-flow periods. The study reveals that the benthic hydrodynamics, sediment permeability, and pore water redox oscillations are all intimately linked and crucial parameters determining the oxygen availability. These parameters must all be considered when evaluating mineralization pathways of organic matter and nutrients in permeable sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Active fluid venting was observed for the first time along the Aleutian convergent margin during RV SONNE cruise 97. These subduction-induced cold vents were subsequently investigated in detail during cruise SO 110 in the summer of 1996 using the Canadian remotely operated vehicle, ROPOS. Active sites of dewatering were found at the youngest deformation structure adjacent to the decollement zone. High concentrations of reduced gases in the escaping fluids provide the nutritional and energy basis for the observed chemosynthetic communities in which clams and tubeworms dominate. Further evidence for fluid venting comes from the mineral precipitates of barite and carbonates.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2018-12-19
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-12-20
    Description: Plate collision cuases expulsion of fluids and gases and material turnover in the deep ocean along the global subduction zones. Such cold vents are characterized by mineral precipitates and characteristic assemblages of macro organisms. The latter harbor symbiotic bacteria which utilize the chemically-reduced constituents (CH4 and H2S) of the expelled fluids as their energy and supply their host with food. The interaction between tectonically-induced fluid flow and pumping activity of the vent fauna sets up a shallow recirculation system whose magnitude can be estimated from direct measurements by an in situ vent sampling device (VESP) in connection with tracer studies. The dewatering rates based on the biogeochemical estimates agree surprisingly well with those derived from geophysical estimates.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Ernst & Sohn
    In:  Geowissenschaften, 15 . pp. 181-184.
    Publication Date: 2016-06-02
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Forschungszentrum Jülich GmbH
    In:  Journal of Large-Scale Research Facilities JLSRF, 3 (A117).
    Publication Date: 2017-09-06
    Description: The remotely operated vehicle ROV KIEL 6000 is a deep diving platform rated for water depths of 6000 meters. It is linked to a surface vessel via an umbilical cable transmitting power (copper wires) and data (3 single-mode glass fibers). As standard it comes equipped with still and video cameras and two different manipulators providing eyes and hands in the deep. Besides this a set of other tools may be added depending on the mission tasks, ranging from simple manipulative tools such as chisels and shovels to electrically connected instruments which can send in-situ data to the ship through the ROVs network, allowing immediate decisions upon manipulation or sampling strategies.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: A natural carbon dioxide (CO2) seep was discovered during an expedition to the southern German North Sea (October 2008). Elevated CO2 levels of ∼10–20 times above background were detected in seawater above a natural salt dome ∼30 km north of the East-Frisian Island Juist. A single elevated value 53 times higher than background was measured, indicating a possible CO2 point source from the seafloor. Measured pH values of around 6.8 support modeled pH values for the observed high CO2 concentration. These results are presented in the context of CO2 seepage detection, in light of proposed subsurface CO2 sequestering and growing concern of ocean acidification. We explore the boundary conditions of CO2 bubble and plume seepage and potential flux paths to the atmosphere. Shallow bubble release experiments conducted in a lake combined with discrete-bubble modeling suggest that shallow CO2 outgassing will be difficult to detect as bubbles dissolve very rapidly (within meters). Bubble-plume modeling further shows that a CO2 plume will lose buoyancy quickly because of rapid bubble dissolution while the newly CO2-enriched water tends to sink toward the seabed. Results suggest that released CO2 will tend to stay near the bottom in shallow systems (〈200 m) and will vent to the atmosphere only during deep water convection (water column turnover). While isotope signatures point to a biogenic source, the exact origin is inconclusive because of dilution. This site could serve as a natural laboratory to further study the effects of carbon sequestration below the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-04-25
    Description: Fluid venting has been observed along 800 km of the Alaska convergent margin. The fluid venting sites are located near the deformation front, are controlled by subsurface structures, and exhibit the characteristics of cold seeps seen in other convergent margins. The more important characteristics include (1) methane plumes in the lower water column with maxima above the seafloor which are traceable to the initial deformation ridges; (2) prolific colonies of vent biota aligned and distributed in patches controlled by fault scarps, over‐steepened folds or outcrops of bedding planes; (3) calcium carbonate and barite precipitates at the surface and subsurface of vents; and (4) carbon isotope evidence from tissue and skeletal hard parts of biota, as well as from carbonate precipitates, that vents expel either methane‐ or sulfide‐dominated fluids. A biogeochemical approach toward estimating fluid flow rates from individual vents based on oxygen flux measurements and vent fluid analysis indicates a mean value of 5.5±0.7 L m−2 d−1 for tectonics‐induced water flow [Wallmann et al., 1997b]. A geophysical estimate of dewatering from the same area [von Huene et al., 1997] based on sediment porosity reduction shows a fluid loss of 0.02 L m−2 d−1 for a 5.5 km wide converged segment near the deformation front. Our video‐guided surveys have documented vent biota across a minimum of 0.1% of the area of the convergent segment off Kodiak Island; hence an average rate of 0.006 L m−2 d−1 is estimated from the biogeochemical approach. The two estimates for tectonics‐induced water flow from the accretionary prism are in surprisingly good agreement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...