GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AMS (American Meteorological Society)  (29)
  • AGU (American Geophysical Union)  (24)
  • AtlantOS  (4)
  • 1
    Publication Date: 2019-09-23
    Description: A deliberate tracer release experiment in 2008–2010 was used to study diapycnal mixing in the tropical northeastern Atlantic. The tracer (CF3SF5) was injected on the isopycnal surface σΘ = 26.88 kg m−3, which corresponds to about 330 m depth. Three surveys, performed 7, 20, and 30 months after the release, sampled the vertically and laterally expanding tracer patch. The mean diapycnal mixing estimate over the entire region occupied by the tracer and the period of 30 months was found to be (1.19 ± 0.18) × 10−5 m2 s−1, or, alternatively, (3.07 ± 0.58) × 10−11 (kg m−3)2 s−1 as computed from the advection-diffusion equation in isopycnal coordinates with the thickness-weighted averaging. The latter method is preferable in the regions of different stratification for it yields local diapycnal mixing estimates varying less with stratification than their Cartesian coordinate counterparts. Results of this study are comparable to the results of the North Atlantic tracer release experiment (NATRE). However, the internal wave-wave interaction models predict reduced mixing from the breaking of internal waves at low latitudes. Thus, the diapycnal diffusivity found in this study is higher than parameterized by the low latitude of the site (4°N–12°N).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-04
    Description: Changes in the ventilation of the oxygen minimum zone (OMZ) of the tropical North Atlantic are studied using oceanographic data from 18 research cruises carried out between 28.5° and 23°W during 1999–2008 as well as historical data referring to the period 1972–85. In the core of the OMZ at about 400-m depth, a highly significant oxygen decrease of about 15 μmol kg−1 is found between the two periods. During the same time interval, the salinity at the oxygen minimum increased by about 0.1. Above the core of the OMZ, within the central water layer, oxygen decreased too, but salinity changed only slightly or even decreased. The scatter in the local oxygen–salinity relations decreased from the earlier to the later period suggesting a reduced filamentation due to mesoscale eddies and/or zonal jets acting on the background gradients. Here it is suggested that latitudinally alternating zonal jets with observed amplitudes of a few centimeters per second in the depth range of the OMZ contribute to the ventilation of the OMZ. A conceptual model of the ventilation of the OMZ is used to corroborate the hypothesis that changes in the strength of zonal jets affect mean oxygen levels in the OMZ. According to the model, a weakening of zonal jets, which is in general agreement with observed hydrographic evidences, is associated with a reduction of the mean oxygen levels that could significantly contribute to the observed deoxygenation of the North Atlantic OMZ.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 22 (20). pp. 5319-5345.
    Publication Date: 2019-09-23
    Description: Seasonal reconstructions of the Southern Hemisphere annular mode (SAM) index are derived to extend the record before the reanalysis period, using station sea level pressure (SLP) data as predictors. Two reconstructions using different predictands are obtained: one [Jones and Widmann (JW)] based on the first principal component (PC) of extratropical SLP and the other (Fogt) on the index of Marshall. A regional-based SAM index (Visbeck) is also considered.These predictands agree well post-1979; correlations decline in all seasons except austral summer for the full series starting in 1958. Predictand agreement is strongest in spring and summer; hence agreement between the reconstructions is highest in these seasons. The less zonally symmetric SAM structure in winter and spring influences the strength of the SAM signal over land areas, hence the number of stations included in the reconstructions. Reconstructions from 1865 were, therefore, derived in summer and autumn and from 1905 in winter and spring. This paper examines the skill of each reconstruction by comparison with observations and reanalysis data. Some of the individual peaks in the reconstructions, such as the most recent in austral summer, represent a full hemispheric SAM pattern, while others are caused by regional SLP anomalies over the locations of the predictors. The JW and Fogt reconstructions are of similar quality in summer and autumn, while in winter and spring the Marshall index is better reconstructed by Fogt than the PC index is by JW. In spring and autumn the SAM shows considerable variability prior to recent decades.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 37 . L24610.
    Publication Date: 2017-06-20
    Description: A decade of weak convection in the Labrador Sea associated with decreasing water mass transformation, in combination with advective and eddy fluxes into the convection area, caused significant warming of the deep waters in both the central Labrador Sea and boundary current system along the Labrador shelf break. The connection to the export of Deep Water was studied based on moored current meter stations between 1997 and 2009 at the exit of the Labrador Sea, near the shelf break at 5˚3N. More than 100 year -long current meter records spanning the full water column have been analyzed with respect to high frequency variability, decaying from the surface to the bottom layer, and for the annual mean flow, showing intra- to interannual variability but no detectable decadal trend in the strength of the deep and near-bottom flow out of the Labrador Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 89 (41). p. 391.
    Publication Date: 2017-02-24
    Description: The physical oceanography community recently lost one of its most influential and productive scientists. Friedrich A. (“Fritz”) Schott, who had been fighting leukemia for about a year, died on 30 April 2008 at the age of 69.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-15
    Description: Open-ocean deep convection is a littleunderstood process occurring in winter in remote areas under hostile observation conditions, for example, in the Labrador and Greenland Seas and near the Antarctic continent. Deep convection is a crucial link in the “Great Ocean Conveyor Belt” [Broecker, 1991], transforming poleward flowing warm surface waters through atmosphere-oceaninteraction into cold equatorward flowing water masses. Understanding its physics, interannual variations, and role in the global thermohaline circulation is an important objective of climate change research. In convection regions, drastic changes in water mass properties and distribution occur on scales of 10–100 km. These changes occur quickly and are difficult to observe with conventional oceanographic techniques. Apart from observing the development of the deep-mixed patch of homogeneous water itself, processes of interest are convective plumes on scales 〈1 km and vertical velocities of several cm s−1 [Schott et al., 1994] that quickly mix water masses vertically, and instability processes at the rim of the convection region that expedite horizontal exchanges of convected and background water masses [e.g., Gascard, 1978].
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 26 . pp. 2251-2266.
    Publication Date: 2018-04-06
    Description: A simple point-vortex “heton” model is used to study localized ocean convection. In particular, the statistically steady state that is established when lateral buoyancy transfer, effected by baroclinic instability, offsets the localized surface buoyancy loss is investigated. Properties of the steady state, such as the statistically steady density anomaly of the convection region, are predicted using the hypothesis of a balance between baroclinic eddy transfer and the localized surface buoyancy loss. These predictions compare favorably with the values obtained through numerical integration of the heton model. The steady state of the heron model can be related to that in other convection scenarios considered in several recent studies by means of a generalized description of the localized convection. This leads to predictions of the equilibrium density anomalies in these scenarios, which concur with those obtained by other authors. Advantages of the heton model include its inviscid nature, emphasizing the independence of the fluxes affected by the baroclinic eddies from molecular processes, and its extreme economy, allowing a very large parameter space to be covered. This economy allows us to examine more complicated forcing scenarios: for example, forcing regions of varying shape. By increasing the ellipticity of the forcing region, the instability is modified by the shape and, as a result, no increase in lateral fluxes occurs despite the increased perimeter length. The parameterization of convective mixing by a redistribution of potential vorticity, implicit in the heton model, is corroborated; the heton model equilibrium state has analogous quantitative scaling behavior to that in models or laboratory experiments that resolve the vertical motions. The simplified dynamics of the heton model therefore allows the adiabatic advection resulting from baroclinic instability to be examined in isolation from vertical mixing and diffusive processes. These results demonstrate the importance of baroclinic instability in controlling the properties of a water mass generated by localized ocean convection. A complete parameterization of this process must therefore account for the fluxes induced by horizontal variations in surface buoyancy loss and affected by baroclinic instability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 98 (C8). pp. 14401-14421.
    Publication Date: 2018-03-22
    Description: During the winter of 1988–1989 five acoustic Doppler current profilers (ADCPs) were moored in the central Greenland Sea to measure vertical currents that might occur in conjunction with deep mixing and convection. Two ADCPs were looking up from about 300 m and combined with thermistor strings in the depth range 60–260 m, two were looking downward from 200 m, and one was looking upward from 1400 m. First maxima of vertical velocity variance occurred at two events of strong cold winds in October and November when cooling and turbulence in the shallow mixed layer generated internal waves in the thermocline. Beginning in late November the marginal ice zone expanded eastward over the central Greenland Sea, reaching its maximum extent in late December. In mid-January a bay of ice-free water opened over the central Greenland Sea, leaving a wedge of ice, the “is odden,” curled around it along the axis of the Jan Mayen Current and then northeastward and existing well into April 1989. Below the ice a mixed layer at freezing temperatures developed that increased in thickness from 60 to 120 m during the period of ice cover, corresponding to an average heat loss of about 40 W m−2. Through brine rejection, mixed-layer salinity increased steadily, reducing stability to underlying weakly stratified layers (Roach et al., 1993). During the ice cover period, vertical currents were at a minimum. After the opening of the ice-free bay, successive mixed-layer deepening to 〉350 m occurred in conjunction with cooling events around February 1 and 15, accompanied by strong small-scale vertical velocity variations. Upward mixing of more saline waters of Atlantic origin during this phase reduced the stability further, generating a pool of homogeneous water of 〉50 km horizontal extent in the central Greenland Sea, preconditioned for subsequent convection to greater depths. Individual convection events were observed during March 6–16, associated with downward velocities at the 1400-m level of about 3 cm s−l. One event was identified as a plume of about 300-m horizontal scale, in agreement with recently advanced scaling arguments and model results, and with earlier similar observations in the Gulf of Lions, western Mediterranean. The deep convection occurred in the center of the ice-free bay; hence brine rejection did not seem necessary for its generation. Plume temperatures at 1400 m were generally higher than that of the homogeneous surface pool, suggesting entrainment of surrounding warmer waters on the way down. Mean vertical velocity over a period of convection events was indistinguishable from zero, suggesting that plumes served as a mixing agent rather than causing mean downward transport of water masses. However, different from the surface pool that was governed by mixed-layer physics, the water between 400 and 1400 m was not horizontally homogenized in a large patch by the sporadic plumes. Overall, and compared to results from the Gulf of Lions, convection activity in the central Greenland Sea was weak and limited to intermediate depths in winter 1988–1989.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 25 . pp. 2765-2768.
    Publication Date: 2018-02-13
    Description: Convergent and upwelling circulation within the shelfbreak front in the Middle Atlantic Eight are detected using a dye tracer injected into the bottom boundary layer at the foot of the front. From the three day displacement and dispersion of two dye injections within the front we infer Lagrangian isopycnal (diapycnal) velocities and diffusivities of 2 x 10(-2) m/s (4 x 10(-6) m/s) and 9 m(2)/s (6 x 10(-6) m(2)/s). These results substantiate model predictions of Chapman and Lentz [1994] and previous dye tracer observations by Houghton [1997].
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 31 (2). pp. 616-636.
    Publication Date: 2018-04-06
    Description: Transient eddies in the atmosphere induce a poleward transport of heat and moisture. A moist static energy budget of the surface layer is determined from the NCEP reanalysis data to evaluate the impact of the storm track. It is found that the transient eddies induce a cooling and drying of the surface layer with a monthly mean maximum of 60 W m−2. The cooling in the midlatitudes extends zonally over the entire basin. The impact of this cooling and drying on surface heat fluxes, sea surface temperature (SST), water mass transformation, and vertical structure of the Pacific is investigated using an ocean model coupled to an atmospheric mixed layer model. The cooling by atmospheric storms is represented by adding an eddy-induced transfer velocity to the mean velocity in an atmospheric mixed layer model. This is based on a parameterization of tracer transport by eddies in the ocean. When the atmospheric mixed layer model is coupled to an ocean model, realistic SSTs are simulated. The SST is up to 3 K lower due to the cooling by storms. The additional cooling leads to enhanced transformation rates of water masses in the midlatitudes. The enhanced shallow overturning cells affect even tropical regions. Together with realistic SST and deep winter mixed layer depths, this leads to formation of homogeneous water masses in the upper North Pacific, in accordance to observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...