GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Monthly Weather Review, AMER METEOROLOGICAL SOC, ISSN: 0027-0644
    Publication Date: 2019-06-26
    Description: Improvement and optimization of numerical sea ice models are of great relevance for understanding the role of sea ice in the climate system. They are also a prerequisite for meaningful prediction. To improve the simulated sea ice properties, we develop an objective parameter optimization system for a coupled sea ice– oceanmodel based on a genetic algorithm. To take the interrelation of dynamic and thermodynamicmodel parameters into account, the system is set up to optimize 15 model parameters simultaneously. The optimization is minimizing a cost function composed of the model–observation misfit of three sea ice quantities (concentration, drift, and thickness). The system is applied for a domain covering the entire Arctic and northern North Atlantic Ocean with an optimization window of about two decades (1990–2012). It successfully improves the simulated sea ice properties not only during the period of optimization but also in a validation period (2013–16). The similarity of the final values of the cost function and the resulting sea ice fields from a set of 11 independent optimizations suggest that the obtained sea ice fields are close to the best possible achievable by the current model setup, which allows us to identify limitations of the model formulation. The optimized parameters are applied for a simulation with a higher-resolution model to examine a portability of the parameters. The result shows good portability, while at the same time, it shows the importance of the oceanic conditions for the portability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMER METEOROLOGICAL SOC
    In:  EPIC3Monthly Weather Review, AMER METEOROLOGICAL SOC, ISSN: 0027-0644
    Publication Date: 2019-06-26
    Description: The uniqueness of optimal parameter sets of an Arctic sea ice simulation is investigated. A set of parameter optimization experiments is performed using an automatic parameter optimization system, which simultaneously optimizes 15 dynamic and thermodynamic process parameters. The system employs a stochastic approach (genetic algorithm) to find the global minimum of a cost function. The cost function is defined by the model–observation misfit and observational uncertainties of three sea ice properties (concentration, thickness, drift) covering the entire Arctic Ocean over more than two decades. A total of 11 independent optimizations are carried out to examine the uniqueness of the minimum of the cost function and the associated optimal parameter sets. All 11 optimizations asymptotically reduce the value of the cost functions toward an apparent global minimum and provide strikingly similar sea ice fields. The corresponding optimal parameters, however, exhibit a large spread, showing the existence of multiple optimal solutions. The result shows that the utilized sea ice observations, even though covering more than two decades, cannot constrain the process parameters toward a unique solution. A correlation analysis shows that the optimal parameters are interrelated and covariant. A principal component analysis reveals that the first three (six) principal components explain 70% (90%) of the total variance of the optimal parameter sets, indicating a contraction of the parameter space. Analysis of the associated ocean fields exhibits a large spread of these fields over the 11 optimized parameter sets, suggesting an importance of ocean properties to achieve a dynamically consistent view of the coupled sea ice–ocean system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-15
    Description: The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 838N 68W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (〈1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-16
    Description: Anthropogenic radionuclides released into European coastal waters from nuclear fuel reprocessing plants at Sellafield (UK) and La Hague (France) flow northward through the Nordic Seas and label Atlantic Water (AW) entering the Arctic Ocean. Transport of the soluble radionuclide 129I through the Arctic Ocean has been simulated using a numerical model for the period from 1970 to 2010. The simulated tracer distributions closely conform to 129I measurements made across the Arctic Ocean during the mid-1990s and 2000s and clearly illustrate the dramatic changes in oceanic circulation which occurred during this time. The largest changes in surface circulation were associated with the transition from a negative to a positive phase of the Arctic Oscillation in the early 1990s and the subsequent return to a weak phase in the late 1990s and early 2000s. Model and experimental results indicate that a new circulation regime evolved in the late 2000s when a period of intense, anti-cyclonic surface stress led to a strengthening of the Beaufort Gyre. We submit that this resulted in a suppression of the counter-rotating boundary current of mid-depth Atlantic Water (AW) below the Beaufort Gyre, with upper AW in the Canada Basin showing signs of a reversal from cyclonic to anti-cyclonic flow. These results are consistent with the development of a new AW circulation scheme involving a separation between flow at intermediate depths in the Eurasian and Canada Basins which could eventually result in alteration of the source water characteristics of Arctic intermediate depth water in the Nordic seas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-09
    Description: Ice-platelet clusters modify the heat and mass balance of sea ice near Antarctic ice shelves and provide a unique habitat for ice-associated organisms. The amount and distribution of these ice crystals below the solid sea ice provide insight into melt rates and circulation regimes in the ice-shelf cavities, which are difficult to observe directly. However, little is known about the circum-Antarctic volume of the sub-sea-ice platelet layer, because observations have mostly been limited to point measurements. In this study, we present a new application of multi-frequency electromagnetic (EM) induction sounding to quantify platelet-layer properties. Combining in situ data with the theoretical response yields a bulk platelet-layer conductivity of 1154 +/- 271 mSm–1 and ice-volume fractions of 0.29–0.43. Calibration routines and uncertainties are discussed in detail to facilitate future studies. Our results suggest that multi-frequency EM induction sounding is a promising method to efficiently map platelet-layer volume on a larger scale than has previously been feasible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-12-03
    Description: Basal melt of ice shelves may lead to an accumulation of disc-shaped ice platelets underneath nearby sea ice, to form a sub-ice platelet layer. Here we present the seasonal cycle of sea ice attached to the Ekström Ice Shelf, Antarctica, and the underlying platelet layer in 2012. Ice platelets emerged from the cavity and interacted with the fast-ice cover of Atka Bay as early as June. Episodic accumulations throughout winter and spring led to an average platelet-layer thickness of 4m by December 2012, with local maxima of up to 10 m. The additional buoyancy partly prevented surface flooding and snow-ice formation, despite a thick snow cover. Subsequent thinning of the platelet layer from December onwards was associated with an inflow of warm surface water. The combination of model studies with observed fast-ice thickness revealed an average ice-volume fraction in the platelet layer of 0.25+-0.1. We found that nearly half of the combined solid sea-ice and ice-platelet volume in this area is generated by heat transfer to the ocean rather than to the atmosphere. The total ice-platelet volume underlying Atka Bay fast ice was equivalent to more than one-fifth of the annual basal melt volume under the Ekström Ice Shelf.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...