GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-07-30
    Description: In times of warming in polar regions, the prediction of ice sheet discharge is of utmost importance to society, because of its impact on sea level rise. In simulations the flow rate of ice is usually implemented as proportional to the differential stress to the power of the exponent n=3. This exponent influences the softness of the modeled ice, as higher values would produce faster flow under equal stress. We show that the stress exponent, which best fits the observed state of the Greenland Ice Sheet, equals n=4. Our results, which are not dependent on a possible basal sliding component of flow, indicate that most of the interior northern ice sheet is currently frozen to bedrock, except for the large ice streams and marginal ice. Ice in the polar ice sheets flows towards the oceans under its own weight. Knowing how fast the ice flows is of crucial importance to predict future sea level rise. The flow has two components: (1) internal shearing flow of ice and (2) basal motion, which is sliding along the base of ice sheets, especially when the ice melts at this base. To determine the first component we need to know how "soft" the ice is. By considering the flow velocities at the surface of the northern Greenland Ice Sheet and calculating the stresses that cause the flow, we determined that the ice is effectively softer than is usually assumed. Previous studies indicated that the base of the ice is thawed in large parts (up to about 50%) of the Greenland Ice Sheet. Our study shows that that is probably overestimated, because these studies assumed ice to be harder than it actually is. Our new assessment reduces the area with basal motion and thus melting to about 6-13% in the Greenland study area.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Predictions of marine ice-sheet behaviour require models able to simulate grounding-line migration. We present results of an intercomparison experiment for plan-view marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no buttressing effects from lateral drag). Perturbation experiments specifying spatial variation in basal sliding parameters permitted the evolution of curved grounding lines, generating buttressing effects. The experiments showed regions of compression and extensional flow across the grounding line, thereby invalidating the boundary layer theory. Steady-state grounding-line positions were found to be dependent on the level of physical model approximation. Resolving grounding lines requires inclusion of membrane stresses, a sufficiently small grid size (〈500m), or subgrid interpolation of the grounding line. The latter still requires nominal grid sizes of 〈5 km. For larger grid spacings, appropriate parameterizations for ice flux may be imposed at the grounding line, but the short-time transient behaviour is then incorrect and different from models that do not incorporate grounding-line parameterizations. The numerical error associated with predicting grounding-line motion can be reduced significantly below the errors associated with parameter ignorance and uncertainties in future scenarios.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    INT GLACIOL SOC
    In:  EPIC3Journal of Glaciology, INT GLACIOL SOC, 60(220), pp. 215-232, ISSN: 0022-1430
    Publication Date: 2014-06-23
    Description: We study the presence and effect of subglacial water on the motion of the inland ice in western Dronning Maud Land. A full-Stokes model including three routing schemes for a thin film of subglacial water and a modification of a Weertman-type sliding relation to account for higher sliding velocities under wet basal conditions were used to perform 200 ka spin-up simulations on a 2.5 km grid. Subsequent 30 ka simulations with wet and dry basal conditions were analysed for the effects of sliding on the thermal regime and velocities. The occurrence of the major ice streams in this area is mainly controlled by the ice and bedrock geometry. Smaller glaciers only appear as pronounced individual glaciers, when subglacial water is taken into account. The thermal regime is affected by creep instabilities produced by an ice rheology including a microscopic water content, leading to a cyclic behaviour on millennial time scales of the ice flow and occurrence of temperate ice at the base.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-24
    Description: Using transient climate forcing based on simulations from the Alfred Wegener Institute Earth System Model (AWI-ESM), we simulate the evolution of the Greenland Ice Sheet (GrIS) from the last interglacial (125 ka, kiloyear before present) to 2100 AD with the Parallel Ice Sheet Model (PISM). The impact of paleoclimate, especially Holocene climate, on the present and future evolution of the GrIS is explored. Our simulations of the past show close agreement with reconstructions with respect to the recent timing of the peaks in ice volume and the climate of Greenland. The maximum and minimum ice volume at around 18–17 ka and 6–5 ka lag the respective extremes in climate by several thousand years, implying that the ice volume response of the GrIS strongly lags climatic changes. Given that Greenland’s climate was getting colder from the Holocene Thermal Maximum (i.e., 8 ka) to the Pre-Industrial era, our simulation implies that the GrIS experienced growth from the mid-Holocene to the industrial era. Due to this background trend, the GrIS still gains mass until the second half of the 20th century, even though anthropogenic warming begins around 1850 AD. This is also in agreement with observational evidence showing mass loss of the GrIS does not begin earlier than the late 20th century. Our results highlight that the present evolution of the GrIS is not only controlled by the recent climate changes, but is also affected by paleoclimate, especially the relatively warm Holocene climate. We propose that the GrIS was not in equilibrium throughout the entire Holocene and that the slow response to Holocene climate needs to be represented in ice sheet simulations in order to predict ice mass loss, and therefore sea level rise, accurately.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...