GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Chemistry Society
    In:  Environmental Science & Technology, 26 . pp. 5441-5446.
    Publication Date: 2017-03-07
    Description: Direct oceanic disposal of fossil fuel CO2 is being considered as a possible means to moderate the growth rate of CO2 in the atmosphere. We have measured the rise rate and dissolution rate of freely released CO2 droplets in the open ocean to provide fundamental data for carbon sequestration options. A small amount of liquid CO2 was released at 800 m, at 4.4 degrees C, and the rising droplet stream was imaged with a HDTV camera carried on a remotely operated vehicle. The initial rise rate for 0.9-cm diameter droplets was 10 cm/s at 800 m, and the dissolution rate was 3.0 micromol cm(-2) s(-1). While visual contact was maintained for 1 h and over a 400 m ascent, 90% of the mass loss occurred within 30 min over a 200 m ascent above the release point. Images of droplets crossing the liquid-gas-phase boundary showed formation of a gas head, pinching off of a liquid tail, and rapid gas bubble separation and dissolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ACS (American Chemical Society)
    In:  Environmental Science & Technology, 40 (11). pp. 3653-3654.
    Publication Date: 2020-08-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Chemistry Society
    In:  Environmental Science & Technology, 42 (14). pp. 5241-5246.
    Publication Date: 2017-03-07
    Description: In a laboratory-based test series, seven experiments along a simulated Pacific hydrotherm at 152°W, 40°N were carried out to measure the rise velocities of liquefied CO2 droplets under (clathrate) hydrate forming conditions. The impact of a hydrate skin on the rising behavior was investigated by comparing the results with those from outside the field of hydrate stability at matching buoyancy. A thermostatted high-pressure tank was used to establish conditions along the natural oceanic hydrotherm. Under P-/T-conditions allowing hydrate formation, the majority of the droplets quickly developed a skin of CO2 hydrate upon contact with seawater. Rise rates of these droplets support the parametrization by Chen et al. (Tellus 2003, 55B, 723−730), which is based on empirical equations developed to match momentum of hydrate covered, deformed droplets. Our data do not support other parametrizations recently suggested in the literature. In the experiments from 5.7 MPa, 4.8 °C to 11.9 MPa, 2.8 °C positive and negative deviations from predicted rise rates occurred, which we propose were caused by lacking hydrate formation and reflect intact droplet surface mobility and droplet shape oscillations, respectively. This interpretation is supported by rise rates measured at P-/T-conditions outside the hydrate stability field at the same liquid CO2-seawater density difference (Δρ) matching the rise rates of the deviating data within the stability field. The results also show that droplets without a hydrate skin ascend up to 50% faster than equally buoyant droplets with a hydrate skin. This feature has a significant impact on the vertical pattern of dissolution of liquid CO2 released into the ocean. The experiments and data presented considerably reduce the uncertainty of the parametrization of CO2 droplet rise velocity, which in the past emerged partly from their scarcity and contradictions in constraints of earlier experiments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...