GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (8)
  • ECO2 Project Office  (5)
  • GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel  (3)
  • AAAS (American Association for the Advancement of Science)  (2)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (2)
Document type
Publisher
  • 1
    facet.materialart.
    Unknown
    AAAS (American Association for the Advancement of Science)
    In:  Science, 359 (6371). pp. 34-36.
    Publication Date: 2021-02-08
    Description: Research and regulations must be integrated to protect seafloor biota from future mining impacts Summary: As human use of rare metals has diversified and risen with global development, metal ore deposits from the deep ocean floor are increasingly seen as an attractive future resource. Japan recently completed the first successful test for zinc extraction from the deep seabed, and the number of seafloor exploration licenses filed at the International Seabed Authority (ISA) has tripled in the past 5 years. Seafloor-mining equipment is being tested, and industrial-scale production in national waters could start in a few years. We call for integrated scientific studies of global metal resources, the fluxes and fates of metal uses, and the ecological footprints of mining on land and in the sea, to critically assess the risks of deep-sea mining and the chances for alternative technologies. Given the increasing scientific evidence for long-lasting impacts of mining on the abyssal environment, precautionary regulations for commercial deep-sea mining are essential to protect marine ecosystems and their biodiversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: Large quantities of the greenhouse gas methane (CH4) are stored in the seafloor. The flux of CH4 from the sediments into the water column and finally to the atmosphere is mitigated by a series of microbial methanotrophic filter systems of unknown efficiency at highly active CH4-release sites in shallow marine settings. Here, we studied CH4-oxidation and the methanotrophic community at a high-CH4-flux site in the northern North Sea (well 22/4b), where CH4 is continuously released since a blowout in 1990. Vigorous bubble emanation from the seafloor and strongly elevated CH4 concentrations in the water column (up to 42 µM) indicated that a substantial fraction of CH4 bypassed the highly active (up to ∼2920 nmol cm−3 d−1) zone of anaerobic CH4-oxidation in sediments. In the water column, we measured rates of aerobic CH4-oxidation (up to 498 nM d−1) that were among the highest ever measured in a marine environment and, under stratified conditions, have the potential to remove a significant part of the uprising CH4 prior to evasion to the atmosphere. An unusual dominance of the water-column methanotrophs by Type II methane-oxidizing bacteria (MOB) is partially supported by recruitment of sedimentary MOB, which are entrained together with sediment particles in the CH4 bubble plume. Our study thus provides evidence that bubble emission can be an important vector for the transport of sediment-borne microbial inocula, aiding in the rapid colonization of the water column by methanotrophic communities and promoting their persistence close to highly active CH4 point sources.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-03-13
    Description: The accumulation of gas hydrates in marine sediments is essentially controlled by the accumulation of particulate organic carbon (POC) which is microbially converted into methane, the thickness of the gas hydrate stability zone (GHSZ) where methane can be trapped, the sedimentation rate (SR) that controls the time that POC and the generated methane stays within the GHSZ, and the delivery of methane from deep-seated sediments by ascending pore fluids and gas into the GHSZ. Recently, Wallmann et al. (2012) presented transfer functions to predict the gas hydrate inventory in diffusion-controlled geological systems based on SR, POC and GHSZ thickness for two different scenarios: normal and full compacting sediments. We apply these functions to global data sets of bathymetry, heat flow, seafloor temperature, POC input and SR, estimating a global mass of carbon stored in marine methane hydrates from 3 to 455 Gt of carbon (GtC) depending on the sedimentation and compaction conditions. The global sediment volume of the GHSZ in continental margins is estimated to be 60–67 × 1015 m3, with a total of 7 × 1015 m3 of pore volume (available for GH accumulation). However, seepage of methane-rich fluids is known to have a pronounced effect on gas hydrate accumulation. Therefore, we carried out a set of systematic model runs with the transport-reaction code in order to derive an extended transfer function explicitly considering upward fluid advection. Using averaged fluid velocities for active margins, which were derived from mass balance considerations, this extended transfer function predicts the enhanced gas hydrate accumulation along the continental margins worldwide. Different scenarios were investigated resulting in a global mass of sub-seafloor gas hydrates of ~ 550 GtC. Overall, our systematic approach allows to clearly and quantitatively distinguish between the effect of biogenic methane generation from POC and fluid advection on the accumulation of gas hydrate, and hence, provides a simple prognostic tool for the estimation of large-scale and global gas hydrate inventories in marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 10 (8). pp. 5639-5649.
    Publication Date: 2019-07-09
    Description: This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan). The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulfate reduction (SR) and anaerobic methane oxidation (AOM). Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed emanating from the sediments, and the pH reached approximately 4.5 in a sediment depth 〉 6 cm, as determined in situ by microsensors. Methane and sulfate co-occurred in most sediment samples from the vicinity of the vents down to a depth of 3 m. However, SR and AOM were restricted to the upper 7-15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulfate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000-1700 mM), which disrupt the cellular pH homeostasis, and lead to end-product inhibition. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: A simple prognostic tool for gas hydrate (GH) quantification in marine sediments is presented based on a diagenetic transport-reaction model approach. One of the most crucial factors for the application of diagenetic models is the accurate formulation of microbial degradation rates of particulate organic carbon (POC) and the coupled formation of biogenic methane. Wallmann et al. (2006) suggested a kinetic formulation considering the ageing effects of POC and accumulation of reaction products (CH4, CO2) in the pore water. This model is applied to data sets of several ODP sites in order to test its general validity. Based on a thorough parameter analysis considering a wide range of environmental conditions, the POC accumulation rate (POCar in g/m2/yr) and the thickness of the gas hydrate stability zone (GHSZ in m) were identified as the most important and independent controls for biogenic GH formation. Hence, depth-integrated GH inventories in marine sediments (GHI in g of CH4 per cm2 seafloor area) can be estimated as: GHI=a ·POCar·GHSZb ·exp(−GHSZc/POCar/d)+e with a = 0.00214, b = 1.234, c = −3.339, d = 0.3148, e = −10.265. The transfer function gives a realistic first order approximation of the minimum GH inventory in low gas flux (LGF) systems. The overall advantage of the presented function is its simplicity compared to the application of complex numerical models, because only two easily accessible parameters need to be determined.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-24
    Description: Large quantities of methane are stored in hydrates and permafrost within shallow marine sediments in the Arctic Ocean. These reservoirs are highly sensitive to climate warming, but the fate of methane released from sediments is uncertain. Here, we review the principal physical and biogeochemical processes that regulate methane fluxes across the seabed, the fate of this methane in the water column, and potential for its release to the atmosphere. We find that, at present, fluxes of dissolved methane are significantly moderated by anaerobic and aerobic oxidation of methane. If methane fluxes increase then a greater proportion of methane will be transported by advection or in the gas phase, which reduces the efficiency of the methanotrophic sink. Higher freshwater discharge to Arctic shelf seas may increase stratification and inhibit transfer of methane gas to surface waters, although there is some evidence that increased stratification may lead to warming of sub-pycnocline waters, increasing the potential for hydrate dissociation. Loss of sea-ice is likely to increase wind speeds and seaair exchange of methane will consequently increase. Studies of the distribution and cycling of methane beneath and within sea ice are limited, but it seems likely that the sea-air methane flux is higher during melting in seasonally ice-covered regions. Our review reveals that increased observations around especially the anaerobic and aerobic oxidation of methane, bubble transport, and the effects of ice cover, are required to fully understand the linkages and feedback pathways between climate warming and release of methane from marine sediments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ECO2 Project Office
    In:  ECO2 Deliverable, D12.2 . ECO2 Project Office, 6 pp.
    Publication Date: 2019-03-11
    Description: In order to proceed with speculative modelling of the impacts of potential leakage of geologically stored carbon, it is necessary to develop plausible scenarios. Here a range of such scenarios are developed based on a consensus of the possible geological mechanisms of leakage, namely abandoned wells, geological faults and operational blowouts. Whilst the resulting scenarios remain highly speculative, they do enable short term progress in modelling and provide a basis for further debate and refinement.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ECO2 Project Office
    In:  ECO2 Deliverable, D12.1 . ECO2 Project Office, 14 pp.
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...