GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: anoxia ; pyruvate decarboxylase ; rice ; submergence tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The pdc1 gene encoding pyruvate decarboxylase has been isolated and sequenced from an IR54 rice genomic library. In contrast to a previously isolated intron-less rice genomic pdc, pRgpdc3, this gene contains five intervening introns in the coding region and corresponds to a cDNA clone, pRcpdc1, isolated from an IR54-cDNA library constructed from anaerobically-induced mRNAs. Comparison of the deduced amino acid sequence of this gene with that of the rice pdc2 and pdc3 showed 88% and 89% similarity, and 78% and 79% identity, respectively. Southern blots indicated that more than three genes constitute the pdc gene family in rice. pdc1 is highly inducible under anaerobic conditions. Rice pdc2 is also inducible by anoxia but to a much lesser extent than pdc1.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9788
    Keywords: disease resistance ; glucose oxidase ; Gossypium hirsutum ; Nicotiana tabacum ; Talaromyces flavus ; transgenic plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Glucose oxidase secreted by the fungus Talaromyces flavus generates, in the presence of glucose, hydrogen peroxide that is toxic to phytopathogenic fungi responsible for economically important diseases in many crops. A glucose oxidase gene from T. flavus, was modified with a carrot extensin signal peptide and fused to either a constitutive or root-specific plant promoter. T1 tobacco plants expressing the enzyme constitutively were protected against infection by the seedling pathogen Rhizoctonia solani. Constitutive expression in tobacco was associated with reduced root growth, and slow germination on culture medium, and with reduced seed set in glasshouse conditions. Several independent transformed cotton plants with a root-specific construct expressed high glucose oxidase activity in the roots, excluding the root tip. Selected T3 homozygous lines showed some protection against the root pathogen, Verticillium dahliae, but not against Fusarium oxysporum. High levels of glucose oxidase expression in cotton roots were associated with reduced height, seed set and seedling germination and reduced lateral root formation. If this gene is to be of value for crop protection against pathogens it will require precise control of its expression to remove the deleterious phenotypes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: antisense ; chromodomain ; DNA methylation ; METI ; plant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methylation of plant DNA occurs at cytosines in any sequence context, and as the Arabidopsis methyltransferase, METI, preferentially methylates cytosines in CG dinucleotides, it is likely that Arabidopsis has other methyltransferases with different target specificities. We have identified five additional genes encoding putative DNA methyltransferases. Three of these genes are very similar to METI throughout the coding region; these genes probably arose by a series of gene duplication events, the most recent giving rise to METIIa and METIIb. METIIa and b are expressed at low levels in vegetative and floral organs and the level of transcripts is not affected by the introduction of a METI antisense transgene, nor do the METII enzymes substitute for the reduced activity of METI in methylating CG dinucleotides. METIII is not essential as it encodes a truncated protein. Two other genes encode a second class of DNA methyltransferase with the conserved motifs characteristic of cytosine methyltransferases, but with little homology to the METI-like methyltransferases through the remainder of the protein. These two methyltransferases are characterized by the presence of a chromodomain inserted within the methyltransferase domain, suggesting that they may be associated with heterochromatin. Both these genes are transcribed at low levels in vegetative and reproductive tissues.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: Eucalyptus globulus ; floral meristem identity gene ; flower development ; in situ hybridization ; LEAFY homologue
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two genes cloned from Eucalyptus globulus, Eucalyptus LeaFy (ELF1 and ELF2), have sequence homology to the floral meristem identity genes LEAFY from Arabidopsis and FLORICAULA from Antirrhinum. ELF1 is expressed in the developing eucalypt floral organs in a pattern similar to LEAFY while ELF2 appears to be a pseudo gene. ELF1 is expressed strongly in the early floral primordium and then successively in the primordia of sepals, petals, stamens and carpels. It is also expressed in the leaf primordia and young leaves and adult and juvenile trees. The ELF1 promoter coupled to a GUS reporter gene directs expression in transgenic Arabidopsis in a temporal and tissue-specific pattern similar to an equivalent Arabidopsis LEAFY promoter construct. Strong expression is seen in young flower buds and then later in sepals and petals. No expression was seen in rosette leaves or roots of flowering plants or in any non-flowering plants grown under long days. Furthermore, ectopic expression of the ELF1 gene in transgenic Arabidopsis causes the premature conversion of shoots into flowers, as does an equivalent 35S-LFY construct. These data suggest that ELF1 plays a similar role to LFY in flower development and that the basic mechanisms involved in flower initiation and development in Eucalyptus are similar to those in Arabidopsis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...