GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 125 (1995), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Hydroxylamine is an intermediate in the oxidation of ammonia to nitrite, but until now it has not been possible to grow Nitrosomonas europaea on hydroxylamine. This study demonstrates that cells of N. europaea are capable of growing mixotrophically on ammonia and hydroxylamine. The molar growth yield on hydroxylamine (4.74 g mol−1 at a growth rate of 0.03 h−1) was higher than expected. Aerobically growing cells of N. europaea oxidized ammonia to nitrite with little loss of inorganic nitrogen, while significant inorganic nitrogen losses occurred when cells were growing mixotrophically on ammonia and hydroxylamine. In the absence of oxygen, hydroxylamine was oxidized with nitrite as electron acceptor, while nitrous oxide was produced. Anaerobic growth of N. europaea on ammonium, hydroxylamine and nitrite could not be observed at growth rates of 0.03 h−1 and 0.01 h−1.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 158 (1998), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Hydrazine is rarely found as an intermediate in microbial nitrogen conversions. In this study the conversion of hydrazine by the anaerobic ammonium oxidation (Anammox) culture, in which hydrazine has been proposed as an intermediate, was investigated. This study demonstrated the biological nature of hydrazine conversion by the Anammox culture. In batch cultures with hydrazine it was observed that 3 mol N2H4 was disproportionated to 4 mol NH+4 and 1 mol N2. Hydrazine with nitrite as an electron acceptor showed a conversion of 3 mol N2H4 and 4 mol NO−2 to 5 mol N2, with a specific activity of 5.5 nmol min−1 (mg volatile suspended solids)−1. Addition of hydrazine to a biofilm reactor for 80 days showed that it was not possible to grow Anammox with hydrazine.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: From recent research it has become clear that at least two different possibilities for anaerobic ammonium oxidation exist in nature. ‘Aerobic’ ammonium oxidizers like Nitrosomonas eutropha were observed to reduce nitrite or nitrogen dioxide with hydroxylamine or ammonium as electron donor under anoxic conditions. The maximum rate for anaerobic ammonium oxidation was about 2 nmol NH+4 min−1 (mg protein)−1 using nitrogen dioxide as electron acceptor. This reaction, which may involve NO as an intermediate, is thought to generate energy sufficient for survival under anoxic conditions, but not for growth. A novel obligately anaerobic ammonium oxidation (Anammox) process was recently discovered in a denitrifying pilot plant reactor. From this system, a highly enriched microbial community with one dominating peculiar autotrophic organism was obtained. With nitrite as electron acceptor a maximum specific oxidation rate of 55 nmol NH+4 min−1 (mg protein)−1 was determined. Although this reaction is 25-fold faster than in Nitrosomonas, it allowed growth at a rate of only 0.003 h−1 (doubling time 11 days). 15N labeling studies showed that hydroxylamine and hydrazine were important intermediates in this new process. A novel type of hydroxylamine oxidoreductase containing an unusual P468 cytochrome has been purified from the Anammox culture. Microsensor studies have shown that at the oxic/anoxic interface of many ecosystems nitrite and ammonia occur in the absence of oxygen. In addition, the number of reports on unaccounted high nitrogen losses in wastewater treatment is gradually increasing, indicating that anaerobic ammonium oxidation may be more widespread than previously assumed. The recently developed nitrification systems in which oxidation of nitrite to nitrate is prevented form an ideal partner for the Anammox process. The combination of these partial nitrification and Anammox processes remains a challenge for future application in the removal of ammonium from wastewater with high ammonium concentrations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 27 (1998), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Recently, the single reactor system for high activity ammonia removal over nitrite (SHARON) process was developed for the removal of ammonia from wastewater with high ammonia concentrations. In contrast to normal systems, this nitrifying reactor system is operated at relatively high temperatures (35°C) without sludge retention. Classical methods to describe the microbial community present in the reactor failed and, therefore, the microorganisms responsible for ammonia removal in this single reactor system were investigated using several complementary molecular biological techniques. The results obtained via these molecular methods were in good agreement with each other and demonstrated successful monitoring of microbial diversity. Denaturing gradient gel electrophoresis of 16S rRNA PCR products proved to be an effective technique to estimate rapidly the presence of at least four different types of bacteria in the SHARON reactor. In addition, analysis of a 16S rRNA gene library revealed that there was one dominant (69%) clone which was highly similar (98.8%) to Nitrosomonas eutropha. Of the other clones, 14% could be assigned to new members of the Cytophaga/Flexibacter group. These data were qualitatively and quantitatively confirmed by two independent microscopic methods. The presence of about 70% ammonia oxidizing bacteria was demonstrated using a fluorescent oligonucleotide probe (NEU) targeted against the 16S rRNA of the Nitrosomonas cluster. Electron microscopic pictures showed the typical morphology of ammonia oxidizers in the majority of the cells from the SHARON reactor.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] With the increased use of chemical fertilizers in agriculture, many densely populated countries face environmental problems associated with high ammonia emissions. The process of anaerobic ammonia oxidation (‘anammox’) is one of the most innovative technological advances in the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-9699
    Keywords: hydroxylamine ; anaerobic ammonium oxidation ; nitrification ; denitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Some aspects of inorganic nitrogen conversion by microorganisms like N2O emission and hydroxylamine metabolism studied by Beijerinck and Kluyver, founders of the Delft School of Microbiology, are still actual today. In the Kluyver Laboratory for Biotechnology, microbial conversion of nitrogen compounds is still a central research theme. In recent years a range of new microbial processes and process technological applications have been studied. This paper gives a review of these developments including, aerobic denitrification, anaerobic ammonium oxidation, heterotrophic nitrification, and formation of intermediates (NO2-, NO, N2O), as well as the way these processes are controlled at the genetic and enzyme level.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 67 (1995), S. 221-227 
    ISSN: 1572-9699
    Keywords: lysine biosynthesis ; aspartate-derived amino acids ; oxaloacetate decarboxylase ; pyruvate kinase ; Corynebacterium glutamicum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Oxaloacetate (OAA) decarboxylase (E.C. 4.1.1.3) was isolated fromCorynebacterium glutamicum. In five steps the enzyme was purified 300-fold to apparent homogeneity. The molecular mass estimated by gel filtration was 118 ± 6 kDa. SDS-PAGE showed a single subunit of 31.7 KDa, indicating an α4 subunit structure for the native enzyme. The enzyme catalyzed the decarboxylation of OAA to pyruvate and CO2, but no other α-ketoacids were used as substrate. The cation Mn2+ was required for full activity, but could be substituted by Mg2+, Co2+, Ni2+ and Ca2+. Monovalent ions like Na+, K+ or NH 4 + were not required for activity. The enzyme was inhibited by Cu2+, Zn2+, ADP, coenzyme A and succinate. Avidin did not inhibit the enzyme activity, indicating that biotin is not involved in decarboxylation of OAA. Analysis of the kinetic properties revealed a K m for OAA of 2.1 mM and a K m of 1.2 mM for Mn2+. The V max was 158 µmol of OAA converted per min per mg of protein, which corresponds to an apparent k cat of 311 s−1.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 71 (1997), S. 69-74 
    ISSN: 1572-9699
    Keywords: hydroxylamine ; nitrification ; aerobic denitrification ; Pseudomonas
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pseudomonas strain PB16, a Gram-negative heterotrophic nitrifying bacterium closely related to Pseudomonas azalaica on the basis of 16 S rDNA analysis, was able to use hydroxylamine as an additional energy source during growth in acetate limited chemostat cultures giving an increased biomass yield. In aerobically growing cells of Pseudomonas PB16 only 50% of supplemented hydroxylamine could be recovered as nitrite. In addition to nitrite, N2O could be detected in the chemostat off-gas, indicating combined heterotrophic nitrification and aerobic denitrification. The maximum specific hydroxylamine oxidizing activity observed was 450 nmol per min per mg dry weight, with a Ks of approximately 40 µm. Upon addition of hydroxylamine to the medium, Pseudomonas PB16 induced a soluble 132 KDa dimeric hydroxylamine oxidoreductase. The enzyme had a pH optimum of 9, and did not contain spectroscopic features typical for cytochromes, which is in contrast to hydroxylamine oxidoreductases fou nd in autotrophic bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-6784
    Source: Springer Online Journal Archives 1860-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The need for rapid analysis of sequence variations in PCR fragments of the same length is increasing in medical diagnostics and environmental studies. Therefore a modified denaturing gradient gel electrophoresis (DGGE) method was developed in which mixed PCR fragments of 1,500 bp could be analysed on a conventional DNA sequencing gel apparatus. In addition, PCR primers without long GC-clamps could be used to amplify the target genes. © Rapid Science Ltd. 1998
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...