GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (10)
  • 1
    Book
    Book
    Amsterdam [u.a.] : Elsevier
    Keywords: Kohlendioxid ; Meerwasser
    Type of Medium: Book
    Pages: XIII, 346 S. , graph. Darst.
    Edition: 1. ed., 3. impr., with corr.
    ISBN: 0444505792 , 0444509461
    Series Statement: Elsevier oceanography series 65
    Language: English
    Note: Literaturverz. S. 313 - 340
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-22
    Description: Total alkalinity (TA) is one of the few measurable quantities that can be used together with other quantities to calculate concentrations of species of the carbonate system (CO2, HCO3 −, CO32−, H+, OH−). TA and dissolved inorganic carbon (DIC) are conservative quantities with respect to mixing and changes in temperature and pressure and are, therefore, used in oceanic carbon cycle models. Thus it is important to understand the changes of TA due to various biogeochemical processes such as formation and remineralization of organic matter by microalgae, precipitation and dissolution of calcium carbonate. Unfortunately deriving such changes from the common expression for TA in terms of concentrations of on-conservative chemical species (HCO3 −, CO3 2 −, B(OH)4 −, H+, OH−, etc.) is rarely obvious. Here an expression for TA (TAec) in terms of the total concentrations of certain major ions (Na+, Cl−, Ca2+ etc.) and the total concentrations of various acid-base species (total phosphate etc.) is derived from Dickson's original definition of TA under the constraint of electroneutrality. Changes of TA by various biogeochemical processes are easy to derive from this so-called explicit conservative expression for TA because each term in this expression is independent of changes of temperature or pressure within the ranges normally encountered in the ocean and obeys a linear mixing relation. Further, the constrains of electroneutrality for nutrient uptake by microalgae and photoautotrophs are discussed. A so-called nutrient-H+-compensation principle is proposed. This principle in combination with TAec allows one to make predictions for changes in TA due to uptake of nutrients that are consistent with observations. A new prediction based on this principle is the change in TA due to nitrogen fixation followed by remineralization of organic matter and subsequent nitrification of ammonia which implies a significant sink of TA in tropical and subtropical regions where most of the nitrogen fixation takes place.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-30
    Description: Throughout the last similar to 900 kyr, the Late Pleistocene, Earth has experienced periods of cold glacial climate, punctuated by seven abrupt transitions to warm interglacials, the so-called terminations. Although most of glacial ice is located in the Northern Hemisphere (NH), the Southern Hemisphere (SH) seems to play a crucial role in deglaciation. Variation in the seasonal distribution of solar insolation is one candidate for the cause of these climatic shifts. But so far, no simple mechanism has been identified. Here we present a mathematical analysis of variations in midsummer insolation in both hemispheres at 65 degrees latitude. Applying this analysis to the entire Pleistocene, the last 2 Myr, we find that prior to each termination the insolation in both hemispheres increases in concert, with a SH lead. Introducing time and energy thresholds to these overlaps, calculated times for the onsets of the seven terminations by this insolation canon (exceptional overlaps meeting the two threshold prerequisites) are similar to 23, 139, 253, 345, 419, 546 and 632 kyr BP, perfectly matching the geologic record. The timing originates from the interplay between the two orbital parameters obliquity and precession, explaining why terminations occur at integer multiple of the precessional cycle. There is no such constellation between I and 2 Myr BP, the Early Pleistocene, in agreement with Earth's climate at that time. This change in orbital forcing coincides with the Mid Pleistocene Revolution, separating the Late from the Early Pleistocene. Therefore, we hypothesize that the insolation canon is the trigger for glacial terminations. (c) 2006 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zachos, James C; Dickens, Gerald Roy; Zeebe, Richard E (2008): An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451(7176), 279-283, https://doi.org/10.1038/nature06588
    Publication Date: 2024-04-25
    Description: Past episodes of greenhouse warming provide insight into the coupling of climate and the carbon cycle and thus may help to predict the consequences of unabated carbon emissions in the future.
    Keywords: AGE; Calculated; δ13C, adjusted/corrected; δ18O, adjusted/corrected
    Type: Dataset
    Format: text/tab-separated-values, 1610 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC3Biogeochemical Controls on Paleoceanographic Environmental Proxies / edited by W.E.N. Austin, and R.H. James. London : Geological Society, 45-58. (Geological Society Special Publication ; No. 303), ISBN: 978-1-86239-257-1
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Encyclopedia of paleoclimatology and ancient environments / ed. by Vivien Gornitz Dordrecht : Springer, pp. 123-127, ISBN: 978-1-402-04551-6
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC3Encyclopedia of paleoclimatology and ancient environments / ed. by Vivien Gornitz Dordrecht : Springer, pp. 479-481, ISBN: 978-1-4020-4551-6
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: The glacial/interglacial rise in atmospheric pCO2 is one of the best known changes in paleoclimate research, yet the cause for it is still unknown. Forcing the coupled oceanatmosphere- biosphere box model of the global carbon cycle BICYCLE with proxy data over the last glacial termination, we are able to quantitatively reproduce transient variations in pCO2 and its isotopic signatures (d13C, D14C) observed in natural climate archives. The sensitivity of the Box model of the Isotopic Carbon cYCLE (BICYCLE) to high or low latitudinal changes is comparable to other multibox models or more complex ocean carbon cycle models, respectively. The processes considered here ranked by their contribution to the glacial/interglacial rise in pCO2 in decreasing order are: the rise in Southern Ocean vertical mixing rates (〉30 ppmv), decreases in alkalinity and carbon inventories (〉30 ppmv), the reduction of the biological pump ( 20 ppmv), the rise in ocean temperatures (15 20 ppmv), the resumption of ocean circulation (15 20 ppmv), and coral reef growth (〈5 ppmv). The regrowth of the terrestrial biosphere, sea level rise and the increase in gas exchange through reduced sea ice cover operate in the opposite direction, decreasing pCO2 during Termination I by 30 ppmv. According to our model the sequence of events during Termination I might have been the following: a reduction of aeolian iron fertilization in the Southern Ocean together with a breakdown in Southern Ocean stratification, the latter caused by rapid sea ice retreat, trigger the onset of the pCO2 increase. After these events the reduced North Atlantic Deep Water (NADW) formation during the Heinrich 1 event and the subsequent resumption of ocean circulation at the beginning of the Blling-Allerd warm interval are the main processes determining the atmospheric carbon records in the subsequent time period of Termination I. We further deduce that a complete shutdown of the NADW formation during the Younger Dryas was very unlikely. Changes in ocean temperature and the terrestrial carbon storage are the dominant processes explaining atmospheric d13C after the Blling-Allerd warm interval.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...