GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 329 (1-4). pp. 79-97.
    Publication Date: 2018-01-05
    Description: In April and May 1996, a geophysical study of the Cascadia continental margin off Oregon and Washington was carried out aboard the German RV Sonne as a cooperative experiment between GEOMAR, the USGS and COAS. Offshore central Oregon, which is the subject of this study, the experiment involved the collection of wide-angle refraction and reflection data along three profiles across the continental margin using ocean-bottom seismometers (OBS) and hydrophones (OBH) as well as land recorders. Two-dimensional modelling of the travel times provides a detailed velocity structure beneath these profiles. The subducting oceanic crust of the Juan de Fuca plate can be traced from the trench to its position some 10 km landward of the coastline. At the coastline, the Moho has a depth of 30 km. The dip of the plate changes from 1.5° westward of the trench to about 6.5° below the accretionary complex and to about 16° further eastward below the coast. The backstop forming western edge of the Siletz terrane, an oceanic plateau that was accreted to North America about 50 Ma ago, is well defined by the observations. It is located about 60 km to the east of the deformation front and has a seaward dip of 40°. At its seaward edge, the base of the Siletz terrane seems to be in contact with the subducting oceanic crust implying that sediments are unlikely to be subducted to greater depths. The upper oceanic crust is thinner to the east of this contact than to the west. At depths greater than 18 km, the top of the oceanic crust is the origin of pre-critical reflections observable in several land recordings and in the data of one ocean bottom instrument. These reflections are most likely caused by fluids that are released from the oceanic crust by metamorphic facies transition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-21
    Description: High-resolution seismic experiments, employing arrays of closely spaced, four-component ocean-bottom seismic recorders, were conducted at a site off western Svalbard and a site on the northern margin of the Storegga slide, off Norway to investigate how well seismic data can be used to determine the concentration of methane hydrate beneath the seabed. Data from P-waves and from S-waves generated by P–S conversion on reflection were inverted for P- and S-wave velocity (Vp and Vs), using 3D travel-time tomography, 2D ray-tracing inversion and 1D waveform inversion. At the NW Svalbard site, positive Vp anomalies above a sea-bottom-simulating reflector (BSR) indicate the presence of gas hydrate. A zone containing free gas up to 150-m thick, lying immediately beneath the BSR, is indicated by a large reduction in Vp without significant reduction in Vs. At the Storegga site, the lateral and vertical variation in Vp and Vs and the variation in amplitude and polarity of reflectors indicate a heterogeneous distribution of hydrate that is related to a stratigraphically mediated distribution of free gas beneath the BSR. Derivation of hydrate content from Vp and Vs was evaluated, using different models for how hydrate affects the seismic properties of the sediment host and different approaches for estimating the background-velocity of the sediment host. The error in the average Vp of an interval of 20-m thickness is about 2.5%, at 95% confidence, and yields a resolution of hydrate concentration of about 3%, if hydrate forms a connected framework, or about 7%, if it is both pore-filling and framework-forming. At NW Svalbard, in a zone about 90-m thick above the BSR, a Biot-theory-based method predicts hydrate concentrations of up to 11% of pore space, and an effective-medium-based method predicts concentrations of up to 6%, if hydrate forms a connected framework, or 12%, if hydrate is both pore-filling and framework-forming. At Storegga, hydrate concentrations of up to 10% or 20% were predicted, depending on the hydrate model, in a zone about 120-m thick above a BSR. With seismic techniques alone, we can only estimate with any confidence the average hydrate content of broad intervals containing more than one layer, not only because of the uncertainty in the layer-by-layer variation in lithology, but also because of the negative correlation in the errors of estimation of velocity between adjacent layers. In this investigation, an interval of about 20-m thickness (equivalent to between 2 and 5 layers in the model used for waveform inversion) was the smallest within which one could sensibly estimate the hydrate content. If lithological layering much thinner than 20-m thickness controls hydrate content, then hydrate concentrations within layers could significantly exceed or fall below the average values derived from seismic data.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: We describe the deep structure of the south Colombian–northern Ecuador convergent margin using travel time inversion of wide-angle seismic data recently collected offshore. The margin appears segmented into three contrasting zones. In the North Zone, affected by four great subduction earthquakes during the 20th century, normal oceanic crust subducts beneath the oceanic Cretaceous substratum of the margin underlined by seismic velocities as high as 6.0–6.5 km/s. In the Central Zone the subducting oceanic crust is over-thickened beneath the Carnegie Ridge. A steeper slope and a well-developed, high velocity, Cretaceous oceanic basement characterizes the margin wedge. This area coincides with a gap in significant subduction earthquake activity. In the South Zone, the subducting oceanic crust is normal. The fore-arc is characterized by large sedimentary basins suggesting significant subsidence. Velocities in the margin wedge are significantly lower and denote a different nature or a higher degree of fracturing. Even if the distance between the three profiles exceeds 150 km, the structural segmentation obtained along the Ecuadorian margin correlates well with the distribution of seismic activity and the neotectonic zonation.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Science technology synergy for research in the marine environment: challanges for the XXI century. , ed. by Beranzoli, L., Favali, P. and Smriglio, G. Developments in marine technology, 12 . Elsevier, Amsterdam, Netherlands, pp. 37-44. ISBN 0-444-50591-1
    Publication Date: 2020-08-03
    Description: Marine seismic wide-angle data acquisition and earthquake seismology observations are at the verge of a quantum leap in data quality and density. Advances in micro-electronic technology facilitates the construction of instrumcnts that enable large data volumes to be collected and that are small and cheap enough so that large numbers can be built and operated economically. The main improvements are a dramatic decrease of power consumption ( 〈 250 m W) and increase in clock stability ( 〈 0.05 ppm}. Several scenarios for future experiments arc discussed in this contrihution
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Science Technology Synergy for Research in the Marine Environment: Challenges for the XXI Century. , ed. by Beranzoli, L., Favali, P. and Smirglio, G. Developments in marine technology, 12 . Elsevier, Amsterdam, Netherlands, p. 2000. ISBN 0-7803-8669-8
    Publication Date: 2020-05-27
    Description: The paper presents an overview of recent seafloor long-term single-frame multiparameter platform developed in the framework of the European Commission and Italian projects starting from the GEOSTAR prototype. The main features of the different systems are described as well as the sea missions that led to their validation. The ORION seafloor observatory network recently developed, based on the GEOSTAR-type platforms and engaged in a deep-sea mission at 3300 m w.d. in the Mediterranean Sea, is also described
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-19
    Description: The eastern Sunda margin off Indonesia (from central Java to Sumba Island) remains a little investigated subduction zone, contrary to its well-studied northwestern segment. Whereas large portions of the Sunda margin are considered a classical accretionary zone, subduction characteristics along the central Java sector indicate erosive processes as the dominant mode of mass transfer. The tectonic framework of the central Java margin, with a convergence rate of 6.7 cm/yr, insignificant sediment input and a pronounced seafloor roughness where the oceanic Roo Rise is subducting underneath Java, facilitates subduction erosion. Evidence for erosion comes from newly acquired geophysical data off central Java: local erosive processes in the wake of seamount subduction are documented by a high-resolution bathymetric survey and result in an irregular trend of the deformation front sculpted by seamount collision scars. Subduction of oceanic basement relief leads to large-scale uplift of the forearc, as recorded on a reflection seismic profile, and to a dismemberment of the previous outer forearc high, giving way to isolated topographic elevations. The broad retreat of the Java Trench and deformation front above the leading edge of the Roo Rise has exposed an area of approximately 25,000 km2 of deeper seafloor formerly covered by the previous frontal prism. Frontal erosion coincides with a steepening of the lower slope angle in the central Java sector compared to the neighbouring segments. In global compilations, the key geological parameters of the central Java margin lie in the erosive regime, reflecting the interplay of basement relief subduction, negligible sediment supply and a high convergence rate on the evolution of the margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-08-03
    Description: Offshore Ecuador, the Carnegie Ridge is a volcanic ridge with a carbonate sediment drape. During the SALIERI Cruise, multibeam bathymetry was collected across Carnegie Ridge with the Simrad EM120 of the R/V SONNE. The most conspicuous features discovered on the Carnegie Ridge are fields of circular closed depressions widely distributed along the mid-slope of the northern and southern flanks of the ridge between 1500 and 2600 m water depth. These circular depressions are 1–4 km wide and typically 100–400 m deep. Most are flat floored and some are so densely packed that they form a honeycomb pattern. The depressions were carved into the ridge sedimentary blanket, which consists of carbonate sediment and has been dated from upper Miocene to upper Pleistocene. Several hypotheses including pockmark origin, sediment creeping, paleo-topography of the volcanic basement, effects of subbottom currents, and both marine and subaerial karstic origins are discussed. We believe that underwater dissolution process merits the most serious consideration regarding the origin of the closed depression.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: The Dalrymple Trough marks part of the transform plate boundary between India and Arabia in the northern Arabian Sea. Oblique extension is presently active across this portion of the boundary at a rate of a few millimetres per year, and seismic reflection profiles across the trough confirm that it is an extensional structure. We present new swath bathymetric and wide-angle seismic data from the trough. The bathymetric data show that the trough is bounded by a single, steep, 3-km-high scarp to the southeast and a series of smaller, en-echelon scarps to the northwest. Wide-angle seismic data show that a typical oceanic crustal velocity structure is present to the northwest, with a crustal thickness of ~ 6 km. There is an abrupt change in crustal thickness and velocity structure at the northwestern edge of the trough, and the trough itself is underlain by 12-km-thick crust interpreted as thinned continental crust. Therefore we infer that Dalrymple Trough is an unusual obliquely extending plate boundary at which continental crust and oceanic crust are juxtaposed. The extensional deformation is focused on a single major fault in the continental lithosphere, but distributed over a region ~ 60 km wide in the oceanic lithosphere
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-15
    Description: Continental rifting at the Vøring Margin off mid-Norway was initiated during the earliest Eocene (~54 Ma), and large volumes of magmatic rocks were emplaced during and after continental breakup. In 2003, a marine survey collecting ocean bottom seismometer, single-channel re!ection, and magnetic data was conducted on the Norwegian Margin to constrain continental breakup and early sea!oor spreading processes. The pro"le described here crosses the northern part of the Vøring Plateau, and the crustal velocity model was constructed through a combination of ray-tracing and forward gravity modeling, the latter corrected for the thermal effects remaining from the sea!oor spreading. We found a maximum igneous crustal thickness of 18 km, decreasing to 6.5 km over the "rst ~6 M.y. after continental breakup. Both the volume and the duration of excess magmatism are about twice as large as that of the Møre Margin south of the East Jan Mayen Fracture Zone, which offsets the two margin segments by ~170 km. A similar reduction in magmatism occurs to the north over an along-margin distance of ~150 km to the Lofoten Margin, but without a margin offset. Both the geochemical data and the mean P-wave velocity indicate that there is active mantle upwelling combined with a moderate temperature increase during the earliest mantle melting at the Vøring Margin. The mean P-wave velocity versus crustal thickness also indicates that there is a transition from convection dominated to temperature dominated magma production ~2 M.y. after breakup. The magnetic data were used to derive plate half-spreading rates for the Northern Vøring Margin, which are very similar to that obtained at the Møre Margin. There is a strong correlation between magma productivity and early plate spreading rate, suggesting a common cause. A model for the breakup-related magmatism should be able to explain this correlation, but also the magma production peak at breakup, the along-margin magmatic segmentation, and the active mantle upwelling. Proposed end-member hypotheses comprise elevated uppermantle temperatures caused by a hot mantle plume, or edge-driven small-scale convection !uxing mantle rocks through the melt zone. Edge-driven convection does not easily explain these observations, but a mantle plume model in which buoyant plume material !ows laterally to pond in the rift-topography at the base of the lithosphere close to breakup time is promising: When the continents break apart, the hot and buoyant plume-material can !ow up into the rift zone from surrounding areas as the rift transits to drift, and the excess temperature of this material will then cause excess magmatism which dies off as the rift-restricted material is spent. The buoyancy of the plume-material may in addition cause active upwelling which can increase the melting furthermore, and also increase the force on the plate boundaries to enhance plate spreading rate. This conceptual model explains how both excess magmatism and spreading rate will be reduced similarly with time as the plume material is consumed by plate spreading, and thus correlate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-24
    Description: Water transported within the subducting oceanic lithosphere into the Earth's interior affects a wealth of subduction zone processes, including intraslab earthquakes and arc magmatism. In recent years growing evidence suggests that much of the hydration of oceanic plates occurs at the trench–ocean slope right before subduction. Here, normal faults are created while the rigid lithosphere bends into the trench. Offshore of Middle America, multi-channel seismic reflection imaging suggests that bending-related faults cut into the uppermost mantle, providing a mechanism for hydration and transformation of mantle peridotites into serpentinites. Seismic wide-angle reflection and refraction data were collected coincident with one of the seismic profiles where the faults have been imaged. Travel time inversion provides evidence that both crustal and uppermost mantle velocities are reduced with respect to the velocity structure found in mature oceanic crust away from deep-sea trenches. If mantle velocity reduction is solely produced by hydration, velocities indicate 10–15% of serpentinization in the uppermost 3 km of the mantle, where seismic data provide enough resolution. A small network of ocean bottom hydrophones, deployed for about a month, detected ∼ 3 local micro earthquakes per day. Earthquake epicentres align with fault scarps at the seafloor and continuous earthquake activity might be an important process to facilitate the percolation of seawater into the upper mantle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...