GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Petroleum reserves - Mathematical models. ; Electronic books.
    Description / Table of Contents: This book is a guide to the use of inverse theory for estimation and conditional simulation of flow and transport parameters in porous media. The text is written for researchers and graduates in petroleum engineering and groundwater hydrology. It includes many worked examples and a selection of exercises.
    Type of Medium: Online Resource
    Pages: 1 online resource (394 pages)
    Edition: 1st ed.
    ISBN: 9780511399466
    DDC: 553.280152
    Language: English
    Note: Cover -- Half-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 Introduction -- 1.1 The forward problem -- 1.2 The inverse problem -- 2 Examples of inverse problems -- 2.1 Density of the Earth -- 2.2 Acoustic tomography -- 2.3 Steady-state 1D flow in porous media -- 2.4 History matching in reservoir simulation -- 2.5 Summary -- 3 Estimation for linear inverse problems -- 3.1 Characterization of discrete linear inverse problems -- 3.1.1 The null space and range -- 3.1.2 Underdetermined problems -- 3.1.3 Overdetermined and mixed determined problems -- 3.2 Solutions of discrete linear inverse problems -- 3.2.1 Gradient operators -- 3.2.2 Solution of purely underdetermined problems -- 3.2.3 Solution of purely overdetermined problems -- 3.2.4 Regularized least-squares solution -- 3.2.5 General regularization -- 3.3 Singular value decomposition -- 3.4 Backus and Gilbert method -- 3.4.1 Least-squares estimation for accurate data -- 3.4.2 Example: estimation of permeability from well test data -- 4 Probability and estimation -- 4.1 Random variables -- 4.1.1 Example: permeability and porosity -- 4.2 Expected values -- 4.2.1 Variance, covariance, and correlation -- 4.2.2 Random vectors -- 4.3 Bayes' rule -- 4.3.1 Example: total depth of a well -- 4.3.2 Example: location of a barrier from well test -- 5 Descriptive geostatistics -- 5.1 Geologic constraints -- 5.2 Univariate distribution -- 5.2.1 Histogram -- 5.2.2 Cumulative distribution plot -- 5.2.3 Box plot -- 5.2.4 Representative values -- 5.3 Multi-variate distribution -- 5.3.1 Stationarity -- 5.3.2 Transformation of variables -- 5.3.3 Experimental covariance -- 5.4 Gaussian random variables -- 5.4.1 Covariance models -- 5.4.2 Covariance matrix -- 5.4.3 Covariance model selection -- 5.4.4 Anisotropic covariance -- 5.5 Random processes in function spaces -- 6 Data. , 6.1 Production data -- 6.1.1 Drawdown tests -- 6.1.2 Interference tests -- 6.1.3 Tracer tests -- 6.1.4 Water-oil ratio -- 6.1.5 Gas-oil ratio -- 6.1.6 Sources of errors in production data -- 6.2 Logs and core data -- 6.2.1 Errors in log and core data -- 6.3 Seismic data -- 6.3.1 Seismic data acquisition -- 6.3.2 Seismic data processing -- 6.3.3 Sources of errors in seismic data -- 6.3.4 Seismic data inversion -- 7 The maximum a posteriori estimate -- 7.1 Conditional probability for linear problems -- 7.1.1 Posteriori mean -- 7.1.2 Maximum of the posterior PDF -- 7.1.3 The posteriori covariance and variance -- 7.2 Model resolution -- 7.2.1 Spread of the resolution -- 7.2.2 1D example - well-logs -- 7.2.3 Well-testing example -- 7.2.4 The resolution of permeability -- 7.3 Doubly stochastic Gaussian random field -- 7.3.1 Doubly stochastic model - example -- 7.4 Matrix inversion identities -- 8 Optimization for nonlinear problems using sensitivities -- 8.1 Shape of the objective function -- 8.1.1 Evaluation of quality of estimate -- 8.2 Minimization problems -- 8.2.1 Maximum likelihood estimate -- 8.2.2 MAP estimate -- 8.2.3 Objective function for sampling with RML -- 8.3 Newton-like methods -- 8.3.1 Newton's method for minimization -- 8.3.2 Gauss-Newton method -- 8.3.3 Gauss-Newton for generating the MAP estimate -- 8.3.4 Restricted-step method for calculation of step size -- 8.4 Levenberg-Marquardt algorithm -- 8.4.1 Spectral analysis of Levenberg-Marquardt algorithm -- 8.4.2 Effects of ill-conditioning -- 8.5 Convergence criteria -- 8.5.1 Convergence tolerance for history-matching problems -- 8.5.2 Convergence of algorithms -- 8.6 Scaling -- 8.7 Line search methods -- 8.7.1 Strong Wolfe conditions -- 8.7.2 Quadratic and cubic line search algorithms -- 8.7.3 Alternate line search method -- 8.8 BFGS and LBFGS -- 8.8.1 Theoretical overview of BFGS. , 8.8.2 Convergence rate of BFGS -- 8.8.3 Scaling of BFGS -- 8.8.4 Efficient implementation of BFGS -- 8.8.5 Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm -- 8.9 Computational examples -- 8.9.1 2D three-phase example -- 8.9.2 3D three-phase example -- 9 Sensitivity coefficients -- 9.1 The Fréchet´ derivative -- 9.1.1 Sensitivity of steady pressure to permeability -- 9.1.2 Frechet´ derivative approach -- 9.1.3 Adjoint approach to calculate Frechét derivative -- 9.2 Discrete parameters -- 9.2.1 Generic finite-dimensional problem -- 9.2.2 Sensitivity by the direct method -- 9.2.3 Sensitivity by the adjoint method -- 9.2.4 Sensitivity by finite-difference method -- 9.3 One-dimensional steady-state flow -- 9.3.1 Direct method -- 9.3.2 The adjoint method -- 9.3.3 Finite-difference method -- 9.4 Adjoint methods applied to transient single-phase flow -- 9.4.1 Discrete and semidiscrete flow equations -- 9.5 Adjoint equations -- 9.5.1 Solution of the adjoint equations -- 9.5.2 Sensitivity to subobjective functions -- 9.6 Sensitivity calculation example -- 9.6.1 Sensitivities from analytical solution -- 9.6.2 Sensitivities from the direct method -- 9.6.3 Sensitivities from the adjoint method -- 9.7 Adjoint method for multi-phase flow -- 9.7.1 The reservoir simulator -- 9.7.2 Adjoint equations and sensitivities -- 9.7.3 Compact derivation of sensitivities -- 9.7.4 G times a vector -- 9.7.5 G T times a vector -- 9.7.6 Comments on sensitivities -- 9.8 Reparameterization -- 9.8.1 Pilot- and master-point methods -- 9.8.2 The master-point method -- 9.9 Examples -- 9.9.1 Sensitivity examples -- 9.9.2 History-matching example -- 9.10 Evaluation of uncertainty with a posteriori covariance matrix -- 9.10.1 Approximate a posteriori covariance matrix -- 9.10.2 Normalized variance -- 9.10.3 Dimensionless sensitivity matrix -- 9.10.4 Example. , 10 Quantifying uncertainty -- 10.1 Introduction to Monte Carlo methods -- 10.1.1 Calculating expectations -- 10.2 Sampling based on experimental design -- 10.2.1 Screening designs -- 10.2.2 Response surface modeling -- 10.3 Gaussian simulation -- 10.3.1 Generating (pseudo) random numbers -- 10.3.2 Cholesky or square-root method -- 10.3.3 Moving average -- 10.3.4 Truncated Gaussian simulation -- 10.4 General sampling algorithms -- 10.4.1 Rejection method -- 10.4.2 Markov chain Monte Carlo -- 10.4.3 Markov random fields -- 10.5 Simulation methods based on minimization -- 10.5.1 Geostatistical approach -- 10.5.2 RML for linear inverse problems -- 10.5.3 RML for nonlinear inverse problems -- 10.5.4 RML as Markov chain Monte Carlo -- 10.6 Conceptual model uncertainty -- 10.7 Other approximate methods -- 10.7.1 Pilot point -- 10.7.2 Gradual deformation -- 10.8 Comparison of uncertainty quantification methods -- 10.8.1 Test problem -- 10.8.2 Results analysis -- 10.8.3 Discussion -- 11 Recursive methods -- 11.1 Basic concepts of data assimilation -- 11.2 Theoretical framework -- 11.3 Kalman filter and extended Kalman filter -- 11.4 The ensemble Kalman filter -- 11.5 Application of EnKF to strongly nonlinear problems -- 11.5.1 Nonlinear dynamic system -- 11.5.2 Implementation of the EnRML -- 11.6 1D example with nonlinear dynamics and observation operator -- 11.7 Example - geologic facies -- 11.7.1 Matching facies observations at wells -- 11.7.2 Matching production data -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Atmosphere. ; Spectrum analysis. ; Meteorology-Methodology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (634 pages)
    Edition: 1st ed.
    ISBN: 9780128156896
    DDC: 551.5
    Language: English
    Note: Front Cover -- Advances in Spectroscopic Monitoring of the Atmosphere -- Advances in Spectroscopic Monitoring of the Atmosphere -- Copyright -- Contents -- Preface -- 1 - Current trends and future outlook in spectroscopic monitoring of the atmosphere -- 1.1 Introduction -- 1.2 Monitoring atmospheric composition -- 1.3 Spectroscopy and the composition of the atmosphere -- 1.4 Current topics of interest -- 1.4.1 Particulate matter -- 1.4.2 Flux measurements -- 1.4.3 Vertical profiles -- 1.4.4 Species of interest -- 1.5 Advances in technology -- 1.5.1 Supercontinuum sources -- 1.5.2 Mid-IR sources: quantum cascade lasers and interband cascade lasers -- 1.5.3 Mid-IR sources: frequency combs -- 1.5.4 Optical cavity techniques -- 1.5.5 Unmanned aerial systems -- 1.5.6 Other spectroscopic techniques -- 1.6 Outlook -- References -- 2 - Remote sensing using open-path dual-comb spectroscopy -- 2.1 Introduction -- 2.1.1 Long open-path atmospheric measurements -- 2.1.2 Current techniques -- 2.1.3 Advantages of open-path DCS -- 2.2 Open-path DCS technology -- 2.2.1 DCS history -- 2.2.2 DCS principle -- 2.2.3 Dual-comb sources and spectral coverage -- 2.2.4 Open-path sensing configuration -- 2.2.4.1 Telescope design -- 2.2.4.2 Telescope efficiency -- 2.2.5 SNR considerations -- 2.2.6 Data acquisition and coherent averaging -- 2.2.7 Extraction of species concentrations -- 2.2.7.1 Line parameters -- 2.2.7.2 Spectral fitting of ro-vibrationally resolved species -- 2.2.7.3 More complex fitting cases -- 2.2.8 Comparability -- 2.2.9 Long-term operation and field deployment challenges -- 2.3 Applications -- 2.3.1 Emission rate determination -- 2.3.2 Urban GHG emissions -- 2.3.3 Industrial oil and gas methane emissions -- 2.3.4 DCS with an airborne retroreflector -- 2.3.5 Agricultural emissions -- 2.3.6 VOC measurements -- 2.4 What is next in DCS-based sensing?. , 2.4.1 Extending the spectral region beyond 1.5 and 3 µm -- 2.4.2 Instrument performance -- 2.4.3 Data analysis -- 2.5 Summary -- List of Acronyms -- References -- 3 - Broadband optical cavity methods -- 3.1 Introduction -- 3.2 Optical cavities -- 3.2.1 Resonator theory -- 3.2.2 Comparison of multipass cells and optical cavities -- 3.3 Measurement strategies -- 3.3.1 Ringdown spectroscopy -- 3.3.2 Cavity-enhanced absorption -- 3.3.3 Phase shift measurements -- 3.4 Instrument design -- 3.4.1 Broadband light sources -- 3.4.2 Detectors -- 3.4.3 Cavity configuration -- 3.4.4 Mechanical design -- 3.4.5 Sample stream handling -- 3.5 Data analysis and performance characterization -- 3.5.1 Data analysis -- 3.5.2 Mirror reflectivity calibration -- 3.5.2.1 Ringdown measurements -- 3.5.2.2 Phase shift measurements -- 3.5.2.3 Samples of known extinction -- 3.5.2.4 Low-loss optical elements -- 3.5.3 Other instrument parameters -- 3.5.4 Analytical performance -- 3.5.4.1 Measurement uncertainty -- 3.5.4.2 Instrument stability and measurement precision -- 3.5.4.3 Limit of detection -- 3.5.4.4 Evaluation of instrument performance -- 3.6 Applications -- 3.6.1 Cross-section measurements -- 3.6.2 Optical properties of particles -- 3.6.3 Concentration measurements -- 3.6.3.1 Nitrogen dioxide, NO2 -- 3.6.3.2 NO3 and N2O5 -- 3.6.3.3 HONO -- 3.6.3.4 Glyoxal and methylglyoxal -- 3.6.3.5 Halogenated species -- 3.6.3.6 Other species -- 3.7 Conclusion and outlook -- References -- 4 - Atmospheric trace gas measurements using laser heterodyne spectroscopy -- 4.1 Introduction -- 4.1.1 Presentation -- 4.1.2 Elements of history -- 4.2 Underlying theoretical principles -- 4.2.1 Laser heterodyne spectrometer models -- 4.2.1.1 Heterodyne signal models -- 4.2.1.2 Noise model -- 4.2.1.3 Signal to noise ratio and noise equivalent power -- 4.2.1.4 Heterodyne efficiency -- 4.2.1.5 Summary. , 4.2.2 Atmospheric information retrieval -- 4.2.2.1 Forward model -- 4.2.2.2 Retrieval -- 4.2.2.3 Summary -- 4.3 Quantum cascade laser heterodyne spectro-radiometers -- 4.3.1 Ground-based measurements of ozone -- 4.3.1.1 Rationale -- 4.3.1.2 Observing system simulations for prior analysis -- 4.3.1.3 Experimental system development -- 4.3.1.4 Results and analysis -- 4.3.2 Ground-based measurement of greenhouse gases -- 4.3.2.1 Rationale -- 4.3.2.2 Prior analysis -- 4.3.2.3 Laboratory demonstration systems -- 4.3.2.4 Deployable LHR for greenhouse gas measurements -- 4.3.2.5 Atmospheric emission -- 4.3.3 Multispecies measurements using widely tunable local oscillators -- 4.4 Prospects for space-borne measurements -- 4.4.1 Small satellite mission concepts -- 4.4.1.1 Greenhouse gas vertical profiling -- 4.4.1.2 Prospects for meteorology applications -- 4.4.1.3 Demonstrator of the hollow waveguide integrated LHR -- 4.4.2 Constellation mission concept -- 4.4.3 Ground-based Mars atmosphere analyzer -- 4.5 Conclusion, wider context, and forward look -- List of acronyms -- Acknowledgments -- References -- 5 - Photoacoustic spectroscopy for gas sensing -- 5.1 - Basics, theory, experimental systems, and applications -- Outline placeholder -- 5.1.1 Introduction and historical perspectives -- 5.1.2 Fundamentals of gas-phase photoacoustics -- 5.1.3 Photoacoustic signal analysis -- 5.1.4 Experimental issues -- 5.1.4.1 Sources and radiation modulation -- 5.1.4.2 Photoacoustic cells -- 5.1.4.2.1 Resonant PA cell combined with multipass arrangement and multimicrophone array -- 5.1.4.2.2 Dual-mode photoacoustic cell -- 5.1.4.2.3 Heatable PA cell -- 5.1.4.2.4 Multifunctional, compact, and miniaturized PA cells -- 5.1.4.3 Quartz-enhanced photoacoustic spectroscopy -- 5.1.4.4 Cantilever-enhanced photoacoustic spectroscopy. , 5.1.5 Examples of photoacoustic spectroscopy applications in trace gas detection -- 5.1.5.1 Traffic pollutant monitoring with conventional PAS -- 5.1.5.2 Aircraft measurements with conventional PAS -- 5.1.5.3 OPO-PA system for simultaneous measurements of CH4, NO2, and NH3 -- 5.1.5.4 Intracavity PA spectroscopy for trace gas sensing -- 5.1.5.5 Alternative configurations of conventional PA method -- 5.1.5.6 QEPAS study on short-lived species -- 5.1.5.7 Most recent QEPAS developments -- 5.1.5.8 Applications of CEPAS sensors -- 5.1.5.9 Further recent CEPAS developments -- 5.1.6 Conclusions and outlook -- Acknowledgments -- References -- 5.2 - Airborne application of a photoacoustic instrument -- Outline placeholder -- 5.2.1 Introduction -- 5.2.2 A brief history of the WaSul-Hygro instrument -- 5.2.3 General advantages of the PA detection method -- 5.2.4 Near-infrared diode lasers in PA measurements -- 5.2.5 System optimization for airborne operation -- 5.2.6 Summary -- References -- 5.3 - Aerosol photoacoustic spectroscopy -- Outline placeholder -- 5.3.1 Introduction -- 5.3.2 PAS and its alternatives for the measurement of light absorption by aerosol -- 5.3.3 The principles and some practical considerations of aerosol PAS -- 5.3.4 Instrument development and its applicability -- 5.3.4.1 Single-wavelength PA instrument for light absorption and mass concentration measurement of BC aerosol -- 5.3.4.2 Multi-wavelength PA instruments for qualitative investigation and source apportionment of LAC -- 5.3.5 Application of aerosol PAS for source apportionment of ambient aerosol -- 5.3.6 Perspectives and outlook -- Acknowledgments -- References -- 6 - Unmanned aerial systems for trace gases -- 6.1 Introduction -- 6.2 Environmental considerations -- 6.2.1 Local emission sampling -- 6.2.2 Long-duration drone sampling. , 6.3 Spectroscopic approaches for sampling on sUAS -- 6.3.1 In situ -- 6.3.2 Path-integrated -- 6.3.3 Other approaches -- 6.4 Flight sampling examples -- 6.4.1 Mass balance -- 6.4.2 Inverse Gaussian dispersion methods -- 6.4.3 Spatial mapping -- 6.4.4 Vertical profiles -- 6.5 Future considerations -- References -- 7 - Measurements of aerosol optical properties using spectroscopic techniques -- 7.1 Introduction -- 7.2 Light scattering and absorption by particles -- 7.2.1 Light scattering and absorption by a single particle -- 7.2.2 Light scattering and absorption by an ensemble of particles -- 7.2.3 Aerosol optical models -- 7.2.4 Effects of optical properties on radiative balance -- 7.3 Measurement techniques of aerosol optical property -- 7.3.1 Remote sensing techniques -- 7.3.2 Filter-based photometers -- 7.3.3 Photoacoustic spectroscopy and photothermal interferometry -- 7.3.4 Integrating nephelometers -- 7.3.5 Cavity ring-down and cavity-enhanced spectroscopy -- 7.3.6 Polar nephelometry -- 7.3.7 Other techniques -- 7.4 Aerosol albedometer -- 7.4.1 Integrated photoacoustic nephelometer -- 7.4.2 Cavity ring-down/enhanced albedometer -- 7.4.2.1 Tube cell configuration -- 7.4.3 Integrating sphere configuration -- 7.5 Intercomparison in the aerosol optical property measurements -- 7.6 Application to optical property measurements of aerosol particles -- 7.6.1 Light absorption of black carbon -- 7.6.1.1 TD method -- 7.6.1.2 MAC method -- 7.6.1.3 Aerosol filter filtration-dissolution method -- 7.6.2 Optical properties of organic carbon -- 7.6.3 Optical properties of mineral dust and iron oxide particles -- 7.6.4 RH dependence of aerosol optical properties -- 7.7 Conclusion -- References -- 8 - Trace gas measurements using cavity ring-down spectroscopy -- 8.1 Introduction -- 8.2 Experimental methods of CRDS -- 8.2.1 Principles of CRDS. , 8.2.2 Optical resonant cavity.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 53 (1988), S. 5622-5628 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 48 (1983), S. 1060-1064 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 51 (1986), S. 1058-1064 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 63 (1991), S. 2042-2047 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 64 (1992), S. 1046-1050 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 65 (1993), S. 3726-3729 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 48 (1983), S. 3765-3770 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...