GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (3)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2020-07-09
    Description: We present recently-acquired high-resolution seismic data and older lower-resolution seismic data from Rock Garden, a shallow marine gas hydrate province on New Zealand's Hikurangi Margin. The seismic data reveal plumbing systems that supply gas to three general sites where seeps have been observed on the Rock Garden seafloor: the ‘LM3’ sites (including LM3 and LM3-A), the ‘Weka’ sites (including Weka-A, Weka-B, and Weka-C), and the ‘Faure’ sites (including Faure-A, Faure-B, and Rock Garden Knoll). At the LM3 sites, seismic data reveal gas migration from beneath the bottom simulating reflection (BSR), through the gas hydrate stability zone (GHSZ), to two separate seafloor seeps (LM3 and LM3-A). Gas migration through the deeper parts of GHSZ below the LM3 seeps appears to be influenced by faulting in the hanging wall of a major thrust fault. Closer to the seafloor, the dominant migration pathways appear to occupy vertical chimneys. At the Weka sites, on the central part of the ridge, seismic data reveal a very shallow BSR. A distinct convergence of the BSR with the seafloor is observed at the exit point of one of the Weka seep locations (Weka-A). Gas supply to this seep is predicted to be focused along the underside of a permeability contrast at the BGHS caused by overlying gas hydrates. The Faure sites are associated with a prominent arcuate slump feature. At Faure-A, high-amplitude reflections, extending from a shallow BSR towards the seafloor, are interpreted as preferred gas migration pathways that exploit relatively-high-permeability sedimentary layers. At Faure-B, we interpret gas migration to be channelled to the seep along the underside of the BGHS — the same scenario interpreted for the Weka-A site. At Rock Garden Knoll, gas occupies shallow sediments within the GHSZ, and is interpreted to migrate up-dip along relatively high-permeability layers to the area of seafloor seepage. We predict that faulting, in response to uplift and flexural extension of the ridge, may be an important mechanism in creating fluid flow conduits that link the reservoir of free gas beneath the BGHS with the shallow accumulations of gas imaged beneath Rock Garden Knoll. From a more regional perspective, much of the gas beneath Rock Garden is focused along a northwest-dipping fabric, probably associated with subduction-related deformation of the margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-07
    Description: The southern Hikurangi Subduction Margin is characterized by significant accretion with predicted high rates of fluid expulsion. Bottom simulating reflections (BSRs) are widespread on this margin, predominantly occurring beneath thrust ridges. We present seismic data across the Porangahau Ridge on the outer accretionary wedge. The data show high-amplitude reflections above the regional BSR level. Based on polarity and reflection strength, we interpret these reflections as being caused by free gas. We propose that the presence of gas above the regional level of BSRs indicates local upwarping of the base of gas hydrate stability caused by advective heatflow from upward migrating fluids, although we cannot entirely rule out alternative processes. Simplified modelling of the increase of the thermal gradient associated with fluid flow suggests that funnelling of upward migrating fluids beneath low-permeability slope basins into the Porangahau Ridge would not lead to the pronounced thermal anomaly inferred from upwarping of the base of gas hydrate stability. Focussing of fluid flow is predicted to take place deep in the accretionary wedge and/or the underthrust sediments. Above the high-amplitude reflections, sediment reflectivity is low. A lack of lateral continuity of reflections suggests that reflectivity is lost because of a destruction of sediment layering from deformation rather than gas-hydrate-related amplitude blanking. Structural permeability from fracturing of sediments during deformation may facilitate fluid expulsion on the ridge. A gap in the BSR in the southern part of the study area may be caused by a loss of gas during fluid expulsion. We speculate that gaps in otherwise continuous BSRs that are observed beneath some thrusts on the Hikurangi Margin may be characteristic of other locations experiencing focussed fluid expulsion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-19
    Description: Regional erosion of the Rock Garden ridge top, a bathymetric high within New Zealand’s Hikurangi Subduction Margin, is likely associated with its gas hydrate system. Seismic data reveal gas pockets that appear partially trapped beneath the shallow base of gas hydrate stability. Steady-state fluid flow simulations, conducted on detailed two-dimensional geological models, reveal that anomalous fluid pressure can develop close to the sea floor in response to lower-permeability hydrate-bearing sediments and underlying gas pockets. Transient simulations indicate that large-scale cycling of fluid overpressure may occur on time scales of a few to tens of years. We predict intense regions of hydro-fracturing to preferentially develop beneath the ridge top rather than beneath the flanks, due to more pronounced overpressure generation and gas migration through hydrate-bearing sediments. Results suggest that sediment weakening and erosion of the ridge top by hydro-fracturing could be owed to fluid dynamics of the shallow gas hydrate system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...