GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • OceanRep  (17)
  • Elsevier  (11)
  • AGU (American Geophysical Union)  (5)
  • Leitstelle Meteor/Merian  (1)
  • Columbia Univ. Press
  • EAGE
  • GeoForschungsZentrum
  • 2010-2014  (17)
Document type
  • OceanRep  (17)
Publisher
Years
Year
  • 11
    Publication Date: 2017-08-07
    Description: Following the devastating 2004 tsunami that hit the southwestern coast of Thailand, the need for detailed bathymetric data of the Andaman Sea outer shelf became evident in order to better predict tsunami wave propagation and coastal impact. Bathymetric data and subbottom profiler records covering the outer shelf and upper slope of the Thai exclusive economic zone (EEZ) were collected onboard Thai RV Chakratong Tongyai in 2006 and 2007. The data cover an area of approximately 3000 km2 between 500 and 1600 m water depth. The soundings allowed generating a final bathymetric grid with 50 m grid cell spacing. The outer shelf is rather smooth and slightly inclined southward, while the upper slope is strongly dissected by gullies. Several previously unknown features are identified including mud-domes, pockmarks, three large plateaus surrounded by moats, gas-charged sediment on subbottom profiler records, and only few indications for small submarine landslides on the upper slope. The largest of these possibly translational submarine landslides involved 2.2×107 m3 of sediment. This slide would have generated a tsunami wave of less than 0.12 m wave height. Considering the entire data, there is no evidence that landslides have been the source of tsunami waves in recent geological time. Highlights
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-07-19
    Description: A seismic refraction and reflection tomography experiment was performed across the igneous province east of Svalbard which is a part of the Cretaceous High Arctic Large Igneous Province. Seismic travel times from 12 ocean bottom seismometers/hydrophones deployed along a 170 km line are inverted to produce smooth 2D images of the crustal P-wave velocity and geometry of the acoustic basement and Moho. The inversion of travel times was complemented by forward elastic wave propagation modeling. Integration with onshore geology as well as multichannel seismic, magnetic and gravity data have provide additional constraints used in the geological interpretation. The seismic P-wave velocity increases rapidly with depth, starting with 3 km/s at the sea floor and reaching 5.5 km/s at the bottom of the upper sedimentary layer. The thickness of this layer increases eastward from 2 km to 3.5 km. On average the P-wave velocity in the crystalline crust increases with depth from 5.5 km/s to 6.8 km/s. The crustal thickness is typical for continental shelf regions (30–34 km). Finger-shaped high-velocity anomalies, one reaching 12% and two of 4–6% velocity perturbation, are obtained. These velocity anomalies are concomitant with Lower Cretaceous basaltic lava flows and sills in the shallow sediments and elongated gravity and magnetic highs, traced towards the northern Barents Sea passive continental margin. We interpret the obtained velocity anomalies as signatures of dikes emplaced in the basement during breakup and subsequent spreading in the Arctic Amerasia Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-01-05
    Description: This work focuses on the analysis of a unique set of seismological data recorded by two temporary networks of seismometers deployed onshore and offshore in the Central Lesser Antilles Island Arc from Martinique to Guadeloupe islands. During the whole recording period, extending from January to the end of August 2007, more than 1300 local seismic events were detected in this area. A subset of 769 earthquakes was located precisely by using HypoEllipse. We also computed focal mechanisms using P-wave polarities of the best azimuthally constrained earthquakes. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. At depth seismicity delineates the Wadati–Benioff Zone down to 170 km depth. The main seismic activity is concentrated in the lower crust and in the mantle wedge, close to the island arc beneath an inner forearc domain in comparison to an outer forearc domain where little seismicity is observed. We propose that the difference of the seismicity beneath the inner and the outer forearc is related to a difference of crustal structure between the inner forearc interpreted as a dense, thick and rigid crustal block and the lighter and more flexible outer forearc. Seismicity is enhanced beneath the inner forearc because it likely increases the vertical stress applied to the subducting plate.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-12-05
    Description: In 2007 the Sismantilles II experiment was conducted to constrain structure and seismicity in the central Lesser Antilles subduction zone. The seismic refraction data recorded by a network of 27 OBSs over an area of 65 km×95 km provide new insights on the crustal structure of the forearc offshore Martinique and Dominica islands. The tomographic inversion of first arrival travel times provides a 3D P-wave velocity model down to 15 km. Basement velocity gradients depict that the forearc is made up of two distinct units: A high velocity gradient domain named the inner forearc in comparison to a lower velocity gradient domain located further trenchward named the outer forearc. Whereas the inner forearc appears as a rigid block uplifted and possibly tilted as a whole to the south, short wavelength deformations of the outer forearc basement are observed, beneath a 3 to 6 km thick sedimentary pile, in relation with the subduction of the Tiburon Ridge and associated seafloor reliefs. North, offshore Dominica Island, the outer forearc is 70 km wide. It extends as far as 180 km to the east of the volcanic front where it acts as a backstop on which the accretionary wedge developed. Its width decreases strongly to the south to terminate offshore Martinique where the inner forearc acts as the backstop. The inner forearc is likely the extension at depth of theMesozoicmagmatic crust outcropping to the north in La Désirade Island and along the scarp of the Karukera Spur. The outer forearc could be either the eastern prolongation of the inner forearc, but the crust was thinned and fractured during the past tectonic history of the area or by recent subduction processes, or an oceanic terrane more recently accreted to the island arc.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-09-23
    Description: This paper describes results from a geophysical study in the area between the ultraslow Knipovich Ridge and Bear Island, western Barents Sea. The objective was to map the crustal structure along a profile crossing a pull-apart rifted continental margin and oceanic crust generated by ultraslow spreading. The results are based on modeling of wide-angle seismic and gravity data, together with interpretation of multichannel reflection data. Our results show a two layered oceanic crust in the western part of the profile. The thickness of the oceanic crust is variable in the western 130 km, ranging from 3.5 to 5.5 km. East of km 130 the crustal thickness is relatively constant, with values close to the global average for oceanic crust. The oceanic crust is buried by a thick package of Cenozoic sedimentary rocks. The continent–ocean transition (COT) is placed in the interval 207–255 km, between unequivocal oceanic crust and the foot of the westernmost fault in the Hornsund Fault Zone. It is not possible to conclude whether this interval is oceanic crust or thinned and intruded continental crust, but we favor the latter interpretation, at least for the eastern part of the COT. Stretched continental crust is observed between Hornsund Fault Zone and the Knølegga Fault. Here the sedimentary rocks have high velocities and are interpreted to be mainly of Mesozoic and Late Paleozoic age. In this interval Moho depths increase abruptly from 15 km in the west to 27 km in the east. Crystalline basement velocities are observed close to the seafloor east of the Knølegga Fault. We suggest that continental breakup north of Greenland–Senja Fracture Zone occurred around 33 Ma, after a period of pull-apart tectonics. The spreading rate of the earliest seafloor spreading may have been higher than the present day spreading, creating thicker oceanic crust close to the COT.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 11 (8). Q08S26.
    Publication Date: 2019-09-23
    Description: An array of broadband seismometers transecting the Talamanca Range in southern Costa Rica was operated from 2005 until 2007. In combination with data from a short‐period network near Quepos in central Costa Rica, this data is analyzed by the receiver function method to image the crustal structure in south‐central Costa Rica. Two strong positive signals are seen in the migrated images, interpreted as the Moho (at around 35 km depth) and an intra‐crustal discontinuity (15 km depth). A relatively flat crustal and Moho interface underneath the north‐east flank of the Talamanca Range can be followed for a lateral distance of about 50 km parallel to the trench, with only slight changes in the overall geometry. Closer to the coast, the topography of the discontinuities shows several features, most notably a deeper Moho underneath the Talamanca Mountain Range and volcanic arc. Under the highest part of the mountain ranges, the Moho reaches a depth of about 50 km, which indicates that the mountain ranges are approximately isostatically compensated. Local deviations from the crustal thickness expected for isostatic equilibrium occur under the active volcanic arc and in south Costa Rica. In the transition region between the active volcanic arc and the Talamanca Range, both the Moho and intracrustal discontinuity appear distorted, possibly related to the southern edge of the active volcanic zone and deformation within the southern part of the Central Costa Rica Deformed Belt. Near the volcanoes Irazu and Turrialba, a shallow converter occurs, correlating with a low‐velocity, low‐density body seen in tomography and gravimetry. Applying a grid search for the crustal interface depth and vp/vs ratio cannot constrain vp/vs values well, but points to generally low values (〈1.7) in the upper crust. This is consistent with quartz‐rich rocks forming the mountain range.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 289 . pp. 323-333.
    Publication Date: 2019-09-23
    Description: We report here the first detailed 2D tomographic image of the crust and upper mantle structure of a Cretaceous seamount that formed during the interaction of the Pacific plate and the Louisville hotspot. Results show that at ∼ 1.5 km beneath the seamount summit, the core of the volcanic edifice appears to be dominantly intrusive, with velocities faster than 6.5 km/s. The edifice overlies both high lower crustal (〉 7.2–7.6 km/s) and upper mantle (〉 8.3 km/s) velocities, suggesting that ultramafic rocks have been intruded as sills rather than underplated beneath the crust. The results suggest that the ratio between the volume of intra-crustal magmatic intrusion and extrusive volcanism is as high as ∼ 4.5. In addition, the inversion of Moho reflections shows that the Pacific oceanic crust has been flexed downward by up to ∼ 2.5 km beneath the seamount. The flexure can be explained by an elastic plate model in which the seamount emplaced upon oceanic lithosphere that was ∼ 10 Myr at the time of loading. Intra-crustal magmatic intrusion may be a feature of hotspot volcanism at young, hot, oceanic lithosphere, whereas, magmatic underplating below a pre-existing Moho may be more likely to occur where a hotspot interacts with oceanic lithosphere that is several tens of millions of years old.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...