GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Hochschulschrift ; Phytoplankton ; Meeresökosystem
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (79 Seiten = 7 MB) , Illustrationen, Graphen
    Edition: 2021
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 8 (2002), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Climate variations over the Northern Hemisphere are to a substantial proportion associated with the North Atlantic Oscillation (NAO). Recently, many studies revealed the impacts of the NAO on the dynamics of organisms in different ecosystems but the results in the single studies were inconsistent. Here, we used meta-analysis techniques for a quantitative synthesis of results. We tested the influence of the NAO on the timing of life history events, on biomass of organisms, and on biomass of different trophic levels. We found a clear NAO signature in freshwater, marine, and terrestrial ecosystems. The response of life history events to the NAO was similar in all environments but less pronounced at higher latitudes. The magnitude of the biomass response was significantly related to the NAO, either positively in aquatic or negatively in terrestrial ecosystems. The response depended on longitude, the effect being less pronounced in Eastern Europe. The results stressed that a meta-analysis is a valuable tool in the field of climate-driven ecosystem responses and can identify more general ecological responses than single studies. We recommend the inclusion of nonsignificant results in order to archive an objective view of the strength of NAO and climate impacts in general.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The aim of this study was to estimate patchiness in biomass and in the internal nutrient status of benthic algae on hard substrata (epilithon) in Lake Erken, Sweden, over different levels of distance, depth and time. Knowledge of the sources and scale of patchiness should enable more precise estimation of epilithic biomass and nutrient status for the entire lake. We focused on the horizontal scale, about which little is known.2. We sampled epilithon by SCUBA diving and used a hierarchical sampling design with different horizontal scales (cm, dm, 10 m, km) which were nested in two temporal scales (within and between seasons). We also compared two successive years and three sampling depths (0, 1 and 4 m). Biomass was measured as particulate carbon and chlorophyll a (Chl a) and internal nutrient status as carbon : nitrogen : phosphorus (C : N : P) ratios and as specific alkaline phosphatase activity (APA).3. Horizontal variation accounted for 60–80 and 7–70% of the total variation in biomass and in nutrient status, respectively, at all depths and during both years. Both small and large scales accounted for significant variation. We also found variation with time and depth. Biomass increased in autumn after a summer minimum, and the within-season variation was very high. The lowest biomass was found at 0 m depth. Both N and P limitation occurred, being higher in 1996 than in 1997 and decreased with depth.4. As a consequence, any sampling design must address variation with distance, depth and time when estimating biomass or nutrient limitation of benthic algae for an entire lake. Based on this analysis, we calculated an optimal sampling design for detecting change in the epilithic biomass of Lake Erken between different sampling days. It is important to repeat the sampling as often as possible, but also the large scales (10 m and km) and the dm scale should be replicated. Using our calculations as an example, and after a pilot study, an optimal sampling design can be computed for various objectives and for any lake.5. Short-term impact of the wind, light and nutrient limitation, and grazing, might be important in regulating the biomass and nutrient status of epilithic algae in Lake Erken. Patchiness in the nutrient status of algae was not coupled to the patchiness of biomass, indicating that internal nutrients and biomass were regulated by different factors.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 417 (2002), S. 848-851 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A key question in ecology is which factors control species diversity in a community. Two largely separate groups of ecologists have emphasized the importance of productivity or resource supply, and consumers or physical disturbance, respectively. These variables show unimodal relationships with ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 426 (2000), S. 185-192 
    ISSN: 1573-5117
    Keywords: nutrient competition ; periphyton ; nitrogen ; silicate ; eutrophication ; benthic microalgae ; hard substrates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to understand the effect of changing nutrient conditions on benthic microalgae on hard substrates, in-situ experiments with artificial substrates were conducted in Kiel Fjord, Western Baltic Sea. As an extension of previous investigations, we used artificial substrates without silicate and thus were able to supply nutrient media with different Si:N ratios to porous substrates, from where they trickled out continuously. The biofilm developing on these substrates showed a significant increase in biovolume due to N + P enrichment, while Si alone had only minor effects. The stoichiometric composition of the biomass indicated nitrogen limitation during most of the year. The C:N ratios were lowered by the N + P addition. The algae were dominated by diatoms in most cases, but rhodophytes and chlorophytes also became important. The nutrient treatment affected the taxonomic composition mostly at the species level. The significance of the results with regard to coastal eutrophication is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-19
    Description: Highlights: • We used indoor mesocosms to test the impact of warming on plankton communities. • Different stages of phytoplankton bloom were analysed. • Increased temperature and zooplankton grazing had similar effects on phytoplankton. • Warming and increased zooplankton density decreased phytoplankton richness. • Warming and increased zooplankton density increased phytoplankton evenness. Recent climate warming is expected to affect phytoplankton biomass and diversity in marine ecosystems. Temperature can act directly on phytoplankton (e.g. rendering physiological processes) or indirectly due to changes in zooplankton grazing activity. We tested experimentally the impact of increased temperature on natural phytoplankton and zooplankton communities using indoor mesocosms and combined the results from different experimental years applying a meta-analytic approach. We divided our analysis into three bloom phases to define the strength of temperature and zooplankton impacts on phytoplankton in different stages of bloom development. Within the constraints of an experiment, our results suggest that increased temperature and zooplankton grazing have similar effects on phytoplankton diversity, which are most apparent in the post-bloom phase, when zooplankton abundances reach the highest values. Moreover, we observed changes in zooplankton composition in response to warming and initial conditions, which can additionally affect phytoplankton diversity, because changing feeding preferences of zooplankton can affect phytoplankton community structure. We conclude that phytoplankton diversity is indirectly affected by temperature in the post-bloom phase through changing zooplankton composition and grazing activities. Before and during the bloom, however, these effects seem to be overruled by temperature enhanced bottom-up processes such as phytoplankton nutrient uptake.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Landscape connectivity can increase the capacity of communities to maintain their function when environments change by promoting the immigration of species or populations with adapted traits. However, high immigration may also restrict fine tuning of species compositions to local environmental conditions by homogenizing the community. Here we demonstrate that dispersal generates such a tradeoff between maximizing local biomass and the capacity of model periphyton metacommunities to recover after a simulated heat wave. In non-disturbed metacommunities, dispersal decreased the total biomass by preventing differentiation in species composition between the local patches making up the metacommunity. On the contrary, in metacommunities exposed to a realistic summer heat wave, dispersal promoted recovery by increasing the biomass of heat tolerant species in all local patches. Thus, the heat wave reorganized the species composition of the metacommunities and after an initial decrease in total biomass by 38.7%, dispersal fueled a full recovery of biomass in the restructured metacommunities. Although dispersal may decrease equilibrium biomass, our results highlight that connectivity is a key requirement for the response diversity that allows ecological communities to adapt to climate change through species sorting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-01-31
    Description: Ecosystem functioning is affected by horizontal (within trophic groups) and vertical (across trophic levels) biodiversity. Theory predicts that the effects of vertical biodiversity depend on consumer specialization. In a microcosm experiment, we investigated ciliate consumer diversity and specialization effects on algal prey biovolume, evenness and composition, and on ciliate biovolume production. The experimental data was complemented by a process-based model further analyzing the ecological mechanisms behind the observed diversity effects. Overall, increasing consumer diversity had no significant effect on prey biovolume or evenness. However, consumer specialization affected the prey community. Specialist consumers showed a stronger negative impact on prey biovolume and evenness than generalists. The model confirmed that this pattern was mainly driven by a single specialist with a high per capita grazing rate, consuming the two most productive prey species. When these were suppressed, the prey assemblage became dominated by a less productive species, consequently decreasing prey biovolume and evenness. Consumer diversity increased consumer biovolume, which was stronger for generalists than for specialists and highest in mixed combinations, indicating that consumer functional diversity, i.e. more diverse feeding strategies, increased resource use efficiency. Overall, our results indicate that consumer diversity effects on prey and consumers strongly depend on species-specific growth and grazing rates, which may be at least equally important as consumer specialization in driving consumer diversity effects across trophic levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Wiley-Blackwell
    In:  Oikos (100). pp. 592-600.
    Publication Date: 2017-01-31
    Description: Conceptual models predict counteractive effects of herbivores and nutrient enrichment on plant diversity and reversed effects of grazers under different nutrient regimes. I tested these hypotheses in 11 field experiments with periphyton communities in three different aquatic habitats (a highly eutrophic lake, an meso-eutrophic lake, and an meso-eutrophic part of the Baltic Sea coast) and in different seasons. Grazer access and nutrient supply were manipulated in a factorial design. Species richness and evenness were chosen as response variables. Both manipulated factors had significant and contrasting effects on diversity, with variable effect strength between sites and seasons. From the two aspects of diversity, evenness well reflected the changes in community composition. Fertilization tended to increase the dominance of few species and thus to decrease evenness, whereas grazers counteracted these effects by removing dominant life forms. The response of species richness was not as expected, since grazers decreased richness throughout, whereas nutrients had weaker effects but tended to increase richness. Species richness rather reflected changes in periphyton architecture. Grazers reduced algal richness presumably by co-consumption of rare species in the tightly connected periphyton assemblages, whereas enrichment may increase richness by providing more structure via increased dominance of filamentous species. Although grazer and nutrient effects on richness and evenness were opposing, there was no change in the effect of one factor by manipulation of the other.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wiley
    In:  Ecology Letters, 7 . pp. 192-201.
    Publication Date: 2017-02-22
    Description: While consumer species diversity is known to influence the capture of limited resources, little is known about how prey diversity impacts the transfer of energy and matter among trophic levels. Here, we perform a meta-analysis of experiments that have examined the impact of grazers on the biomass of periphytic algae to test the hypothesis that the magnitude of consumer (grazer) effects on prey (algae) depends on the species diversity of the prey assemblage. The analysis reveals that consumer effects tend to decrease as the diversity of a prey assemblage increases. This trend is robust for several different, yet complementary indices of grazer effect size and algal diversity. The trend also remains significant after statistically controlling for a variety of factors that can covary with prey diversity among studies. We discuss several possible mechanisms for the documented pattern, such as diversity enhancing the probability of inedibility and of positive interactions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...