GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-31
    Description: Ecosystem functioning is affected by horizontal (within trophic groups) and vertical (across trophic levels) biodiversity. Theory predicts that the effects of vertical biodiversity depend on consumer specialization. In a microcosm experiment, we investigated ciliate consumer diversity and specialization effects on algal prey biovolume, evenness and composition, and on ciliate biovolume production. The experimental data was complemented by a process-based model further analyzing the ecological mechanisms behind the observed diversity effects. Overall, increasing consumer diversity had no significant effect on prey biovolume or evenness. However, consumer specialization affected the prey community. Specialist consumers showed a stronger negative impact on prey biovolume and evenness than generalists. The model confirmed that this pattern was mainly driven by a single specialist with a high per capita grazing rate, consuming the two most productive prey species. When these were suppressed, the prey assemblage became dominated by a less productive species, consequently decreasing prey biovolume and evenness. Consumer diversity increased consumer biovolume, which was stronger for generalists than for specialists and highest in mixed combinations, indicating that consumer functional diversity, i.e. more diverse feeding strategies, increased resource use efficiency. Overall, our results indicate that consumer diversity effects on prey and consumers strongly depend on species-specific growth and grazing rates, which may be at least equally important as consumer specialization in driving consumer diversity effects across trophic levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 75 (2009): 5797-5808, doi:10.1128/AEM.00298-09.
    Description: DNA sequence information has been increasingly used in ecological research on microbial eukaryotes. Sequence-based approaches have included studies of the total diversity of selected ecosystems, the autecology of ecologically relevant species, and the identification and enumeration of species of interest to human health. It is still uncommon, however, to delineate protistan species based on their genetic signatures. The reluctance to assign species-level designations based on DNA sequences is partly a consequence of the limited amount of sequence information presently available for many free-living microbial eukaryotes, and partly the problematic nature and debate surrounding the microbial species concept. Despite the difficulties inherent in assigning species names to DNA sequences, there is a growing need to attach meaning to the burgeoning amount of sequence information entering the literature, and a growing desire to apply this information in ecological studies. We describe a computer-based tool that assigns DNA sequences from environmental databases to operational taxonomic units at approximate species-level distinctions. The approach provides a practical method for ecological studies of microbial eukaryotes (primarily protists) by enabling semiautomated analysis of large numbers of samples spanning great taxonomic breadth. Derivation of the algorithm was based on an analysis of complete small subunit ribosomal RNA (18S) gene sequences and partial gene sequences obtained from GenBank for morphologically described protistan species. The program was tested using environmental 18S data sets from two oceanic ecosystems. A total of 388 operational taxonomic units were observed among 2,207 sequences obtained from samples collected in the western North Atlantic and eastern North Pacific.
    Description: Support for this manuscript was provided by National Science Foundation grants MCB-0732066, MCB-0703159 and OCE-0550829 and a grant from the Gordon and Betty Moore Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2009. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Aquatic Microbial Ecology 54 (2009): 269-277, doi:10.3354/ame01276.
    Description: Mixotrophic nanoflagellates (MNF) were quantified in plankton and sea ice of the Ross Sea, Antarctica, during austral spring. Tracer experiments using fluorescently labeled bacteria (FLB) were conducted to enumerate MNF and determine their contribution to total chloroplastidic and total bacterivorous nanoflagellates. Absolute abundances of MNF were typically 〈200 ml–1 in plankton assemblages south of the Polar Front, but they comprised 8 to 42% and 3 to 25% of bacterivorous nanoflagellates in the water column and ice cores, respectively. Moreover, they represented up to 10% of all chloroplastidic nanoflagellates in the water column when the prymnesiophyte Phaeocystis antarctica was blooming (up to 23% if P. antarctica, which did not ingest FLB, was excluded from calculations). In ice cores, MNF comprised 5 to 10% of chloroplastidic nanoflagellates. The highest proportions of MNF were found in some surface water samples and in plankton assemblages beneath ice, suggesting a potentially large effect as bacterial grazers in those locations. This study is the first to report abundances and distributions of mixotrophic flagellates in the Southern Ocean. The presence of MNF in every ice and water sample examined suggests that mixotrophy is an important alternative dietary strategy in this region.
    Description: This work was supported by NSF grant OPP-0125833 to D.A.C. and R.J.G.
    Keywords: Ross Sea ; Antarctica ; Mixotrophy ; Mixotrophic nanoflagellates ; Bacterivory ; Plankton ; Sea ice ; Fluorescently labeled bacteria
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-27
    Description: Body size is a decisive functional trait in many organisms, especially for phytoplankton, which span several orders of magnitude in cell volume. Therefore, the analysis of size as a functional trait driving species’ performance has received wide attention in aquatic ecology, amended in recent decades by studies documenting changes in phytoplankton size in response to abiotic or biotic factors in the environment. We performed a systematic literature review to provide an overarching, partially quantitative synthesis of cell size as a driver and sentinel of phytoplankton ecology. We found consistent and significant allometric relationships between cell sizes and the functional performance of phytoplankton species (cellular rates of carbon fixation, respiration and exudation as well as resource affinities, uptake and content). Size scaling became weaker, absent or even negative when addressing C- or volume-specific rates or growth. C-specific photosynthesis and population growth rate peaked at intermediate cell sizes around 100 µm3. Additionally, we found a rich literature on sizes changing in response to warming, nutrients and pollutants. Whereas small cells tended to dominate under oligotrophic and warm conditions, there are a few notable exceptions, which indicates that other environmental or biotic constraints alter this general trend. Grazing seems a likely explanation, which we reviewed to understand both how size affects edibility and how size structure changes in response to grazing. Cell size also predisposes the strength and outcome of competitive interactions between algal species. Finally, we address size in a community context, where size-abundance scaling describes community composition and thereby the biodiversity in phytoplankton assemblages. We conclude that (a) size is a highly predictive trait for phytoplankton metabolism at the cellular scale, with less strong and nonlinear implications for growth and specific metabolism and (b) size structure is a highly suitable sentinel of phytoplankton responses to changing environments. A free Plain Language Summary can be found within the Supporting Information of this article.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    The Royal Society
    In:  EPIC3Philosophical Transactions of the Royal Society B Biological Sciences, The Royal Society, 371(1694), pp. 20150270-20150270, ISSN: 0962-8436
    Publication Date: 2023-09-22
    Description: 〈jats:p〉Two ecological frameworks have been used to explain multitrophic interactions, but rarely in combination: (i) ecological stoichiometry (ES), explaining consumption rates in response to consumers' demand and prey's nutrient content; and (ii) metabolic theory of ecology (MTE), proposing that temperature and body mass affect metabolic rates, growth and consumption rates. Here we combined both, ES and MTE to investigate interactive effects of phytoplankton prey stoichiometry, temperature and zooplankton consumer body mass on consumer grazing rates and production in a microcosm experiment. A simple model integrating parameters from both frameworks was used to predict interactive effects of temperature and nutrient conditions on consumer performance. Overall, model predictions reflected experimental patterns well: consumer grazing rates and production increased with temperature, as could be expected based on MTE. With decreasing algal food quality, grazing rates increased due to compensatory feeding, while consumer growth rates and final biovolume decreased. Nutrient effects on consumer biovolume increased with increasing temperature, while nutrient effects on grazing rates decreased. Highly interactive effects of temperature and nutrient supply indicate that combining the frameworks of ES and MTE is highly important to enhance our ability to predict ecosystem functioning in the context of global change.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...