GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :American Geophysical Union,
    Keywords: Climatic changes. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (338 pages)
    Edition: 1st ed.
    ISBN: 9781118672600
    Series Statement: Geophysical Monograph Series ; v.187
    Language: English
    Note: Intro -- Title Page -- Contents -- Preface -- Introduction to Surface Ocean-Lower Atmosphere Processes -- Atmospheric Gas Phase Reactions -- Marine Aerosols -- Global Dust Cycle -- Marine Boundary Layer Clouds -- Air-Sea Gas Exchange -- Ocean Circulation -- Marine Pelagic Ecosystems -- Ocean Nutrients -- Ocean Iron Cycle -- Ocean Carbon Cycle -- Dimethylsulfide and Climate -- Hydrography and Biogeochemistry of the Coastal Ocean -- Glacial-Interglacial Variability in Atmospheric CO2 -- Remote Sensing -- Data Assimilation Methods -- Biogeochemical Modeling -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    Washington, DC : American Geophysical Union
    Keywords: Ocean-atmosphere interaction ; Atmospheric chemistry ; Climatic changes ; Aufsatzsammlung ; Meeresoberfläche ; Untere Atmosphäre ; Austausch
    Type of Medium: Book
    Pages: VII, 329 S. , Ill., graph. Darst., Kt
    ISBN: 9780875904771
    Series Statement: Geophysical monograph 187
    DDC: 551.5/246
    RVK:
    Language: English
    Note: Includes bibliographical references and index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Jones, Steve D; Le Quéré, Corinne; Rödenbeck, Christian (2012): Autocorrelation characteristics of surface ocean pCO2 and air-sea CO2 fluxes. Global Biogeochemical Cycles, 26(2), GB2042, https://doi.org/10.1029/2010GB004017
    Publication Date: 2023-06-10
    Description: Understanding the variability and coherence of surface ocean pCO2 on a global scale can provide insights into its physical and biogeochemical drivers and inform future samplings strategies and data assimilation methods. We present temporal and spatial autocorrelation analyses of surface ocean pCO2on a 5° × 5° grid using the Lamont-Doherty Earth Observatory database. The seasonal cycle is robust with an interannual autocorrelation of ~0.4 across multiple years. The global median spatial autocorrelation (e-folding) length is 400 ± 250 km, with large variability across different regions. Autocorrelation lengths of up to 3,000 km are found along major currents and basin gyres while autocorrelation lengths as low as 50 km are found in coastal regions and other areas of physical turbulence. Zonal (east–west) autocorrelation lengths are typically longer than their meridional counterparts, reflecting the zonal nature of many major ocean features. Uncertainties in spatial autocorrelation in different ocean basins are between 42% and 73% of the calculated decorrelation length. The spatial autocorrelation length in air-sea fluxes is much shorter than forpCO2 (200 ± 150 km) due to the high variability of the gas transfer velocity.
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 22.5 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-02
    Description: Microzooplankton database. Originally published in: Buitenhuis, Erik, Richard Rivkin, Sévrine Sailley, Corinne Le Quéré (2010) Biogeochemical fluxes through microzooplankton. Global Biogeochemical Cycles Vol. 24, GB4015, doi:10.1029/2009GB003601 This new version has had some mistakes corrected.
    Keywords: MAREMIP; MARine Ecosystem Model Intercomparison Project
    Type: Dataset
    Format: application/zip, 4 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-20
    Description: Anthropogenically induced increases in nitrogen deposition to the ocean can stimulate marine productivity and oceanic emission of nitrous oxide. We present the first global ocean model assessment of the impact on marine N2O of increases in nitrogen deposition from the preindustrial era to the present. We find significant regional increases in marine N2O production downwind of continental outflow, in coastal and inland seas (15–30%),and nitrogen limited regions of the North Atlantic and North Pacific (5–20%). The largest changes occur in the northern Indian Ocean (up to 50%) resulting from a combination of high deposition fluxes and enhanced N2O production pathways in local hypoxic zones. Oceanic regions relatively unaffected by anthropogenic nitrogen deposition indicate much smaller changes (〈2%). The estimated change in oceanic N2O source on a global scale is modest (0.08–0.34 Tg N yr-1, ~3–4% of the total ocean source), and consistent with the estimated impact on global export production (~4%).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 1983-2000, doi:10.5194/bg-10-1983-2013.
    Description: The globally integrated sea–air anthropogenic carbon dioxide (CO2) flux from 1990 to 2009 is determined from models and data-based approaches as part of the Regional Carbon Cycle Assessment and Processes (RECCAP) project. Numerical methods include ocean inverse models, atmospheric inverse models, and ocean general circulation models with parameterized biogeochemistry (OBGCMs). The median value of different approaches shows good agreement in average uptake. The best estimate of anthropogenic CO2 uptake for the time period based on a compilation of approaches is −2.0 Pg C yr−1. The interannual variability in the sea–air flux is largely driven by large-scale climate re-organizations and is estimated at 0.2 Pg C yr−1 for the two decades with some systematic differences between approaches. The largest differences between approaches are seen in the decadal trends. The trends range from −0.13 (Pg C yr−1) decade−1 to −0.50 (Pg C yr−1) decade−1 for the two decades under investigation. The OBGCMs and the data-based sea–air CO2 flux estimates show appreciably smaller decadal trends than estimates based on changes in carbon inventory suggesting that methods capable of resolving shorter timescales are showing a slowing of the rate of ocean CO2 uptake. RECCAP model outputs for five decades show similar differences in trends between approaches.
    Description: RW, G-HP., RAF were supported in part through the Global Carbon Data Management and Synthesis Project of the NOAA Climate Program Office. NG and HG were supported by funds from ETH Zurich and through the FP7 projects CarboChange (Project reference 264879) and GeoCarbon. CS was supported by grants, NSF/OPP 0944761 and NOAA NA12OAR4310058. SCD acknowledges support through the NOAA Climate Process Team activity, NOAA grant NA07OAR4310098. CH and JS were supported through EU FP7 project COMBINE (grant agreement no. 226520), the Research Council of Norway funded project CarboSeason (185105/S30), the Norwegian Metacenter for Computational Science and Storage Infrastructure (NOTUR and Norstore, “Biogeochemical Earth system modeling” projects nn2980k and ns2980k) and the core project BIOFEEDBACK of the Centre for Climate Dynamics (SKD) within the Bjerknes Centre for Climate Research.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013); 6833-6850, doi:10.5194/bg-10-6833-2013.
    Description: We investigated the mechanisms of phytoplankton competition during the spring bloom, one of the most dramatic seasonal events in lower-trophic-level ecosystems, in four state-of-the-art plankton functional type (PFT) models: PISCES, NEMURO, PlankTOM5 and CCSM-BEC. In particular, we investigated the relative importance of different ecophysiological processes on the determination of the community structure, focusing both on the bottom-up and the top-down controls. The models reasonably reproduced the observed global distribution and seasonal variation of phytoplankton biomass. The fraction of diatoms with respect to the total phytoplankton biomass increases with the magnitude of the spring bloom in all models. However, the governing mechanisms differ between models, despite the fact that current PFT models represent ecophysiological processes using the same types of parameterizations. The increasing trend in the percentage of diatoms with increasing bloom magnitude is mainly caused by a stronger nutrient dependence of diatom growth compared to nanophytoplankton (bottom-up control). The difference in the maximum growth rate plays an important role in NEMURO and PlankTOM5 and determines the absolute values of the percentage of diatoms during the bloom. In CCSM-BEC, the light dependency of growth plays an important role in the North Atlantic and the Southern Ocean. The grazing pressure by zooplankton (top-down control), however, strongly contributes to the dominance of diatoms in PISCES and CCSM-BEC. The regional differences in the percentage of diatoms in PlankTOM5 are mainly determined by top-down control. These differences in the mechanisms suggest that the response of marine ecosystems to climate change could significantly differ among models, even if the present-day ecosystem is reproduced to a similar degree of confidence. For further understanding of plankton competition and for the prediction of future change in marine ecosystems, it is important to understand the relative differences in each physiological rate and life history rate in the bottom-up and the top-down controls between PFTs.
    Description: T. Hashioka, Y. Yamanaka and T. Hirata, were supported by the Grant-in-Aid for the Global COE Program from MEXT, by the Global Environment Research Fund (S-5) from the Ministry of the Environment and by the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation from JSPS. S. Doney, I. Lima and S. Sailley acknowledge support from C-MORE (NSF EF-0424599).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C07S06, doi:10.1029/2005JC003173.
    Description: Climate variability drives significant changes in the physical state of the North Pacific, and thus there may be important impacts of climate variability on the upper ocean carbon balance across the basin. We address this issue by considering the response of seven biogeochemical ocean models to climate variability in the North Pacific. The models’ upper ocean pCO2 and air-sea CO2 flux respond similarly to climate variability on seasonal to decadal timescales. Modeled seasonal cycles of pCO2 and its temperature and non-temperature driven components at three contrasting oceanographic sites capture the basic features found in observations [Takahashi et al., 2002, 2006; Keeling et al., 2004; Brix et al., 2004]. However, particularly in the Western Subarctic Gyre, the models have difficulty representing the temporal structure of the total pCO2 cycle because it results from the difference of these two large and opposing components. In all but one model, the airsea CO2 flux interannual variability (1σ) in the North Pacific is smaller (ranges across models from 0.03 to 0.11 PgC/yr) than in the Tropical Pacific (ranges across models from 0.08 to 0.19 PgC/yr), and the timeseries of the first or second EOF of the air-sea CO2 flux has a significant correlation with the Pacific Decadal Oscillation (PDO). Though air-sea CO2 flux anomalies are correlated with the PDO, their magnitudes are small (up to ±0.025 PgC/yr (1σ)). Flux anomalies are damped because anomalies in the key drivers of pCO2 (temperature, dissolved inorganic carbon (DIC) and alkalinity) are all of similar magnitude and have strongly opposing effects that damp total pCO2 anomalies.
    Description: F. Chai and L. Shi acknowledge grant support from NSF (OCE 0137272) and NASA (NAG5-9348; S. Doney and I. Lima from NSF/ONR NOPP (N000140210370) and NASA (NNG05GG30G); G. McKinley from NASA (NNG05GF94G); and T. Takahashi from NOAA (NA16GP2001).
    Keywords: Ocean carbon cycle ; Ocean models ; PDO
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...