GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
  • 2005-2009  (1)
Document type
Keywords
Language
Years
Year
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We forced a global terrestrial carbon cycle model by climate fields of 14 ocean and atmosphere general circulation models (OAGCMs) to simulate the response of terrestrial carbon pools and fluxes to climate change over the next century. These models participated in the second phase of the Coupled Model Intercomparison Project (CMIP2), where a 1% per year increase of atmospheric CO2 was prescribed. We obtain a reduction in net land uptake because of climate change ranging between 1.4 and 5.7 Gt C yr−1 at the time of atmospheric CO2 doubling. Such a reduction in terrestrial carbon sinks is largely dominated by the response of tropical ecosystems, where soil water stress occurs. The uncertainty in the simulated land carbon cycle response is the consequence of discrepancies in land temperature and precipitation changes simulated by the OAGCMs. We use a statistical approach to assess the coherence of the land carbon fluxes response to climate change. The biospheric carbon fluxes and pools changes have a coherent response in the tropics, in the Mediterranean region and in high latitudes of the Northern Hemisphere. This is because of a good coherence of soil water content change in the first two regions and of temperature change in the high latitudes of the Northern Hemisphere.Then we evaluate the carbon uptake uncertainties to the assumptions on plant productivity sensitivity to atmospheric CO2 and on decomposition rate sensitivity to temperature. We show that these uncertainties are on the same order of magnitude than the uncertainty because of climate change. Finally, we find that the OAGCMs having the largest climate sensitivities to CO2 are the ones with the largest soil drying in the tropics, and therefore with the largest reduction of carbon uptake.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr−1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr−1) or sequestered in sediments (~0.5 Pg C yr−1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr−1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr−1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr−1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-21
    Description: Overviewing the European carbon (C), greenhouse gas (GHG), and non-GHG fluxes, gross primary productivity (GPP) is about 9.3 Pg yr-1, and fossil fuel imports are 1.6 Pg yr-1. GPP is about 1.25% of solar radiation, containing about 360 × 1018 J energy - five times the energy content of annual fossil fuel use. Net primary production (NPP) is 50%, terrestrial net biome productivity, NBP, 3%, and the net GHG balance, NGB, 0.3% of GPP. Human harvest uses 20% of NPP or 10% of GPP, or alternatively 1‰ of solar radiation after accounting for the inherent cost of agriculture and forestry, for production of pesticides and fertilizer, the return of organic fertilizer, and for the C equivalent cost of GHG emissions. C equivalents are defined on a global warming potential with a 100-year time horizon. The equivalent of about 2.4% of the mineral fertilizer input is emitted as N2O. Agricultural emissions to the atmosphere are about 40% of total methane, 60% of total NO-N, 70% of total N2O-N, and 95% of total NH3-N emissions of Europe. European soils are a net C sink (114 Tg yr−1), but considering the emissions of GHGs, soils are a source of about 26 Tg CO2 C-equivalent yr-1. Forest, grassland and sediment C sinks are offset by GHG emissions from croplands, peatlands and inland waters. Non-GHGs (NH3, NOx) interact significantly with the GHG and the C cycle through ammonium nitrate aerosols and dry deposition. Wet deposition of nitrogen (N) supports about 50% of forest timber growth. Land use change is regionally important. The absolute flux values total about 50 Tg C yr-1. Nevertheless, for the European trace-gas balance, land-use intensity is more important than land-use change. This study shows that emissions of GHGs and non-GHGs significantly distort the C cycle and eliminate apparent C sinks.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...