GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Birds -- Migration -- Climatic factors -- North America. ; Electronic books.
    Description / Table of Contents: Exploring critical linkages between migratory birds, their seasonal resources, and shifts in climate change and weather events, this book brings together research on the current state of bird migration and phenology research in North America. It discusses the relation of the climate on wintering grounds to spring migration, the relationships of migratory birds and their seasonal resources, and the nature of these relationships in the face of climate change or extreme weather events. It also examines the USA-National Phenology Network's Nature's Notebook program, and ways in which these data can be incorporated into conservation research.
    Type of Medium: Online Resource
    Pages: 1 online resource (234 pages)
    Edition: 1st ed.
    ISBN: 9781482240313
    Series Statement: Studies in Avian Biology Series
    DDC: 598.156/80973
    Language: English
    Note: Front Cover -- Contents -- Contributors -- Editors -- Preface -- Chapter 1: Leaps, Chains, and Climate Change for Western Migratory Songbirds -- Chapter 2: Landbird Stopover in the Great Lakes Region : Integrating Habitat Use and Climate Change in Conservation -- Chapter 3: A Bird's-­Eye View of the USA National Phenology Network : An Off-­the-­Shelf Monitoring Program -- Chapter 4: Spring Resource Phenology and Timing of Songbird Migration across the Gulf of Mexico -- Chapter 5: Climate on Wintering Grounds Drives Spring Arrival of Short-­Distance Migrants to the Upper Midwest -- Chapter 6: Phenological Asynchrony between Migrant Songbirds and Food Resources during Early Springs : Initiation of a Trophic Cascade at a Stopover Site -- Chapter 7: Climatic Extremes Influence Spring Tree Phenology and Migratory Songbird Foraging Behavior -- Chapter 8: Phenological Synchrony of Bird Migration with Tree Flowering at Desert Riparian Stopover Sites -- Chapter 9: Shorebird Migration in the Face of Climate Change : Potential Shifts in Migration Phenology and Resource Availability -- Chapter 10: Matching Ephemeral Resources on Autumnal Stopover and the Potential for Mismatch -- Chapter 11: Annual Variation in Autumn Migration Phenology and Energetic Condition at a Stopover Site in the Western United States -- Chapter 12: Autumn Migration of North American Landbirds -- Appendix A -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly 2015, Wien, 2015-04-12-2015-04-17Vol. 17, EGU2015-6172, 2015, Geophysical Research Abstracts
    Publication Date: 2020-03-05
    Description: The energy budgets over land and oceans are still afflicted with considerable uncertainties, despite their key importance for terrestrial and maritime climates. We evaluate these budgets as represented in 43 CMIP5 climate models with direct observations from both surface and space and identify substantial biases, particularly in the surface fluxes of downward solar and thermal radiation. These flux biases in the various models are then linearly related to their respective land and ocean means to infer best estimates for present day downward solar and thermal radiation over land and oceans. Over land, where most direct observations are available to constrain the surface fluxes, we obtain 184 and 306 Wm-2 for solar and thermal downward radiation, respectively. Over oceans, with weaker observational constraints, corresponding estimates are around 185 and 356 Wm-2. Considering additionally surface albedo and emissivity, we infer a surface absorbed solar and net thermal radiation of 136 and -66 Wm-2 over land, and 170 and -53 Wm-2 over oceans, respectively. The surface net radiation is thus estimated at 70 Wm-2 over land and 117 Wm-2 over oceans, which may impose additional constraints on the poorly known sensible/latent heat flux magnitudes, estimated here near 32/38 Wm-2 over land, and 16/100 Wm-2 over oceans. Estimated uncertainties are on the order of 10 and 5 Wm-2 for most surface and TOA fluxes, respectively. By combining these surface budgets with satellite-determined TOA budgets we quantify the atmospheric energy budgets as residuals (including ocean to land transports), and revisit the global mean energy balance. This study has recently been published online in Climate Dynamics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Geophysical Research Abstracts
    In:  EPIC3EGU General Assembly 2015, Wien, 2015-04-12-2015-04-17Vol. 17, EGU2015-9214, 2015, Geophysical Research Abstracts
    Publication Date: 2020-03-05
    Description: The energy budget over terrestrial surfaces is a key determinant of the land surface climate and governs a variety of physical, chemical and biological surface processes. The purpose of the present study is to establish new reference estimates for the different components of the energy balance over global land surfaces. Thanks to the impressive progress in space-based observation systems in the past decade, we now know the energy exchanges between our planet and the surrounding space with unprecedented accuracy. However, the energy flows at the Earth’s surface have not been established with the same accuracy, since they cannot be directly measured from satellites. Accordingly, estimates on the magnitude of the fluxes at terrestrial surfaces largely vary, and latest climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) still show significant differences in their simulated energy budgets on a land mean basis, which prevents a consistent simulation of the land surface processes in these models. In the present study we use to the extent possible direct observations of surface radiative fluxes from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) to better constrain the simulated fluxes over global land surfaces. These model-calculated fluxes stem from the comprehensive set of more than 40 global climate from CMIP5 used in the latest IPCC report AR5. The CMIP5 models overall still show a tendency to overestimate the downward solar and underestimate the downward thermal radiation at terrestrial surfaces, a long standing problem in climate modelling. Based on the direct radiation observations and the bias structure of the CMIP5 models we infer best estimates for the downward solar and thermal radiation averaged over global land surfaces. They amount to 184 Wm-2 and 306 Wm-2, respectively. These values closely agree with the respective quantities independently derived by recent state-of-the-art reanalyses (ERA-Interim) and satellite-derived products (surface CERES EBAF). This remarkable consistency enhances confidence in the determined flux magnitudes, which so far caused large uncertainties in the energy budgets and often hampered an accurate simulation of surface climates in models. Using in addition a land mean surface albedo estimate of 0.26, we determine an average absorbed solar radiation at land surfaces of 136 Wm-2. Our best estimate for the upward thermal radiation at land surfaces (essentially based on the Stefan Boltzmann law) is 372 Wm-2, and combined with the above best estimate of 306 Wm-2 for the downward thermal radiation, this results in a net thermal radiation of -66 Wm-2 averaged over global land surfaces. Adding the absorbed solar and net thermal radiation, our best estimate of the land mean surface net radiation amounts to 70 Wm-2, which is the energy available for the sensible and latent heat fluxes. Latest estimates of terrestrial latent heat fluxes indicate a land mean value slightly below 40 Wm-2. In our best estimate of the global land mean energy balance we thus adopt a land mean latent heat flux of 38 Wm-2, leaving a land mean sensible heat flux of 32 Wm-2 as residual to close the energy balance over terrestrial surfaces. A diagram of the global land mean energy balance including these new estimates and the related discussion has recently been published in Climate Dynamics (Wild et al. 2015).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8289–8318, doi:10.1175/JCLI-D-14-00555.1.
    Description: This study quantifies mean annual and monthly fluxes of Earth’s water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting.
    Description: This research was funded by multiple grants from NASA’s Energy and Water Cycle Study (NEWS) program.
    Description: 2016-05-01
    Keywords: Physical Meteorology and Climatology ; Water budget ; Observational techniques and algorithms ; Remote sensing ; Mathematical and statistical techniques ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8319-8346, doi:10.1175/JCLI-D-14-00556.1.
    Description: New objectively balanced observation-based reconstructions of global and continental energy budgets and their seasonal variability are presented that span the golden decade of Earth-observing satellites at the start of the twenty-first century. In the absence of balance constraints, various combinations of modern flux datasets reveal that current estimates of net radiation into Earth’s surface exceed corresponding turbulent heat fluxes by 13–24 W m−2. The largest imbalances occur over oceanic regions where the component algorithms operate independent of closure constraints. Recent uncertainty assessments suggest that these imbalances fall within anticipated error bounds for each dataset, but the systematic nature of required adjustments across different regions confirm the existence of biases in the component fluxes. To reintroduce energy and water cycle closure information lost in the development of independent flux datasets, a variational method is introduced that explicitly accounts for the relative accuracies in all component fluxes. Applying the technique to a 10-yr record of satellite observations yields new energy budget estimates that simultaneously satisfy all energy and water cycle balance constraints. Globally, 180 W m−2 of atmospheric longwave cooling is balanced by 74 W m−2 of shortwave absorption and 106 W m−2 of latent and sensible heat release. At the surface, 106 W m−2 of downwelling radiation is balanced by turbulent heat transfer to within a residual heat flux into the oceans of 0.45 W m−2, consistent with recent observations of changes in ocean heat content. Annual mean energy budgets and their seasonal cycles for each of seven continents and nine ocean basins are also presented.
    Description: This study is the result of a collaboration of multiple investigators each supported by the NEWS program.
    Keywords: Climatology ; Energy budget/balance ; Heat budgets/fluxes ; Radiative fluxes ; Surface fluxes ; Satellite observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...