GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (4)
Document type
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2024-04-18
    Description: This data collection presents the compilation of scientific results of the EU project BENGAL.
    Keywords: 12812-002; 12913-002; 12914-003; 12923-002; 12923-005; 12923-013; 12925-004; 12925-008; 12926-001; 12926-002; 12930-004; 12930-005; 12930-006; 12930-007; 12930-010; 12930-014; 12930-015; 12930-017; 12930-018; 12930-022; 12930-023; 12930-025; 12930-026; 12930-027; 12930-028; 12930-029; 12930-032; 12930-034; 12930-035; 12930-036; 12930-037; 12930-038; 12930-039; 12930-040; 12930-044; 12930-045; 12930-046; 12930-048; 12930-049; 12930-052; 12930-055; 12930-059; 12930-061; 12930-063; 12930-064; 12930-065; 12930-066; 12930-068; 12930-071; 12930-073; 12930-075; 12930-078; 12930-081; 12930-082; 12930-084; 12930-087; 12930-093; 12930-095; 13077-001; 13077-004; 13077-006; 13077-012; 13077-014; 13077-015; 13077-018; 13077-019; 13077-021; 13077-023; 13077-024; 13077-025; 13077-026; 13077-035; 13077-036; 13077-047; 13077-057; 13077-058; 13077-059; 13077-060; 13077-062; 13077-063; 13077-065; 13077-069; 13077-070; 13077-071; 13077-072; 13077-078; 13077-087; 13077-089; 13077-090; 13077-093; 13077-096; 13077-097; 13077-098; 13077-099; 13078-006; 13078-008; 13078-010; 13078-011; 13078-012; 13078-013; 13078-015; 13078-016; 13078-017; 13078-018; 13078-019; 13078-027; 13078-029; 13078-031; 13078-037; 13078-038; 13200-001; 13200-004; 13200-005; 13200-007; 13200-008; 13200-009; 13200-010; 13200-011; 13200-012; 13200-016; 13200-017; 13200-018; 13200-020; 13200-021; 13200-022; 13200-024; 13200-025; 13200-026; 13200-027; 13200-028; 13200-029; 13200-030; 13200-032; 13200-033; 13200-035; 13200-036; 13200-039; 13200-041; 13200-045; 13200-046; 13200-047; 13200-048; 13200-049; 13200-051; 13200-052; 13200-053; 13200-058; 13200-059; 13200-060; 13200-061; 13200-062; 13200-063; 13200-065; 13200-068; 13200-069; 13200-070; 13200-071; 13200-073; 13200-074; 13200-075; 13200-077; 13200-078; 13200-080; 13200-081; 13200-082; 13200-083; 13200-084; 13200-087; 13200-089; 13200-090; 13200-091; 13200-093; 13200-094; 13200-096; 13200-099; 13201-001; 13201-002; 13201-005; 13368-003; 13368-004; 13368-007; 13368-008; 13368-012; 13368-014; 13368-015; 13368-019; 13368-022; 13368-023; 13368-024; 13368-025; 13368-026; 13368-028; 13368-030; 13368-036; 13368-039; 13368-040; 13368-042; 13368-044; 13368-045; 13368-047; 13368-048; 13368-049; 13368-051; 13368-052; 13368-053; 13368-055; 13368-056; 13368-057; 13370-004; 13370-005; 13370-006; 13627-005; 13627-008; 13627-010; 13627-011; 13627-012; 13627-014; 13627-015; 13627-017; 13627-022; 13627-023; 13627-024; 269; 356; 362; 372; 373; 54301-002; 54301-003; 54301-005; 54301-008; 54301-009; 54301-010; 54301-012; 54301-014; 54301-016; 54301-019; 54301-021; 54301-023; 64PE123; ALBEX lander; Autonome colonisation module; Baited free-fall benthic amphipod trap; BC; Bengal; BENGAL; Benthic Biology and Geochemistry of a North-eastern Atlantic Abyssal Locality; BIO; Biology; BN; Bottom net; Bottom water sampler; Box corer; BWS; CH135; Challenger; Chalut à perche (6 m beam trawl); CMA; CP; CTD/Rosette; CTD-RO; Current meter, Aanderaa; D217; D222/1; D222/2; D226; D229; D231; D236; D237; DEMAR; DI236_08-1; DI236_11-1; DI236_16-1; DI236_18-1; DI236_21-1; DI236_23-1; DI236_25-1; DI236_28-1; DI236_29-1; DI236_31-1; DI236_34-1; DI236_42-1; DI236_45-1; DI236_49-1; Discovery (1962); D-MOC-01; D-MOC-02; D-MOC-03; D-MOC-04; D-MOC-07; Dy222_FFR-05; FFR; FFR-01; FFR-02; FFR-04; Free vehicle respirometer; FT-04; FTS; GBGL; GBGL-01; GBGL-02; Göteborg lander; IMBC; IMBC lander; KASTEN; Kasten corer (1 m**2); M36/4; M36/4_MC1; M36/4_MC4; M36/4_MC5; M36/5; M36/5_MC26; M36/5_MC27; M36/5_MC28; M36/6; M36/6_368FFR; M36/6_371BWS; M36/6_372MUC; M36/6_373MUC; M36/6_375MSN; M36/6_380MSN; M36/6_381BWS; M36/6_BWS-19; M36/6_BWS-20; M36/6_MC33; M36/6_MC38; M36/6_MC41; M42/2; M42/2_363-1; M42/2_365; M42/2_366; M42/2_367; M42/2_368-2; M42/2_368-3; M42/2_370; M42/2_373; M42/2_374-2; M42/2_374-3; M42/2_377-1; M42/2_377-5; M42/2_377-6; M42/2_380-2; M42/2_380-3; M42/2_380-4; M42/2_381; M42/2_384-1; M42/2_385; M42/2_386; M42/2_388-1; M42/2_388-2; M42/2_391-2; M42/2_397-1; M42/2_397-3; M42/2_417; M42/2_418; M42/2_419; M42/2_420; M42/2_421-2; M42/2_421-3; M42/2_421-5; M42/2_422; M42/2_424-1; M42/2_424-2; M42/2_424-4; M42/2_425; M42/2_426-2; M42/2_429-1; M42/2_429-2; M42/2_430; M42/2_432-1; M42/2_433; M42/2_434-1; M42/2_434-2; M42/2_436; M42/2_438; M42/2_BWS-01; M42/2_BWS-02; M42/2_BWS-04; M42/2_BWS-05; M42/2_BWS-09; M42/2_BWS-10; M42/2_BWS-12; M42/2_CTD-03; M42/2_CTD-05; M42/2_CTD-06; M42/2_CTD-07; M42/2_CTD-08; M42/2_CTD-09; M42/2_CTD-13; M42/2_CTD-22; M42/2_CTD-24; M42/2_CTD-25; M42/2_CTD-28; M42/2_CTD-29; M42/2_CTD-31; M42/2_MC-04; M42/2_MC-09; M42/2_MC1; M42/2_MC2; M42/2_MC27; M42/2_MC28; M42/2_MC29; M42/2_MC-30; M42/2_MC31; M42/2_MC-32; M42/2_MC34; M42/2_MC-34; M42/2_MC4; M42/2_MC5; M42/2_MC6; M42/2_MC7; M42/2_MC8; MACOL; MCB57; MCB57-74; MCB92; MCS; MEGAC; MegaCorer; Meteor (1986); MOC; MOC1; MOCNESS opening/closing plankton net; MOCNESS opening/closing plankton net 1 sqm; MSN; MUC; MULT; MultiCorer; MultiCorer, small; MultiCorer Barnett pattern (12-57); MultiCorer Barnett pattern (4-57.8-74); MultiCorer Barnett pattern (8-92); Multiple investigations; Multiple opening/closing net; NIOZL; OTSB14; PAP; PAP-XIX; PAP-XV; PAP-XVIII; PAP-XX; PAP-XXIIIa; Pelagia; Photo sledge; PLG123; PLG123/12-1; PLG123/13-2; PLG123/13-3; PLG123/13-5; PLG123/13-6; PLG123/13-7; PLG123/14-1; Porcupine Abyssal Plain; RESP; Respirometer; RK127; RK128; RK130; SAPS; Sediment profile imagery; Semi-balloon trawl; SEP; South Atlantic Ocean; Spade box corer; Stand-alone pumps; Trap, sediment; TRAPS; VEGBOXC; Vertical amphipod trap; VET
    Type: Dataset
    Format: application/zip, 515 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-22
    Description: The ocean's biological carbon pump plays a central role in regulating atmospheric CO2 levels. In particular, the depth at which sinking organic carbon is broken down and respired in the mesopelagic zone is critical, with deeper remineralization resulting in greater carbon storage. Until recently, however, a balanced budget of the supply and consumption of organic carbon in the mesopelagic had not been constructed in any region of the ocean, and the processes controlling organic carbon turnover are still poorly understood. Large-scale data syntheses suggest that a wide range of factors can influence remineralization depth including upper-ocean ecological interactions, and interior dissolved oxygen concentration and temperature. However, these analyses do not provide a mechanistic understanding of remineralization, which increases the challenge of appropriately modeling the mesopelagic carbon dynamics. In light of this, the UK Natural Environment Research Council has funded a programme with this mechanistic understanding as its aim, drawing targeted fieldwork right through to implementation of a new parameterization for mesopelagic remineralization within an IPCC class global biogeochemical model. The Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS) programme will deliver new insights into the processes of carbon cycling in the mesopelagic zone and how these influence ocean carbon storage. Here we outline the programme's rationale, its goals, planned fieldwork, and modeling activities, with the aim of stimulating international collaboration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-04-07
    Description: The precipitation and export of carbonate by pelagic calcifiers is a source of carbon dioxide (CO2) to the atmosphere over 100-1000 year timescales. The net transfer of atmospheric CO2 to the ocean interior is thus dependent on the rain ratio (organic carbon:inorganic carbon) of particle export. Iron (Fe) fertilisation of Southern Ocean HNLC waters increases organic carbon flux to the deep ocean. However, the response of planktonic calcifiers to Fe enrichment and their impact on carbon drawdown is unknown. Here we show from particle analysis of sediment trap samples that natural iron supply leads to excess fluxes of inorganic carbon larger than those of organic carbon. Foraminifers are the dominant component of inorganic carbon flux (34-49%). Resulting rain ratios are 〈1; a unique occurrence south of the Subantarctic Front. Conservative estimates indicate that the production and flux of carbonate reduces deep ocean CO2 storage by 6-32% in Fe-fertilized waters compared to 1-4% at a non-fertilized control site. Our data suggest any Fe-fertilized increases in Subantarctic organic carbon export may be accompanied by a strengthened carbonate counter pump.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-26
    Description: This study reviews and synthesises existing information generated within the SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) deep drilling project. The four main aims of the project are to infer (i) the age and origin of Lake Ohrid (Former Yugoslav Republic of Macedonia/Republic of Albania), (ii) its regional seismotectonic history, (iii) volcanic activity and climate change in the central northern Mediterranean region, and (iv) the influence of major geological events on the evolution of its endemic species. The Ohrid basin formed by transtension during the Miocene, opened during the Pliocene and Pleistocene, and the lake established de novo in the still relatively narrow valley between 1.9 and 1.3 Ma. The lake history is recorded in a 584m long sediment sequence, which was recovered within the framework of the International Continental Scientific Drilling Program (ICDP) from the central part (DEEP site) of the lake in spring 2013. To date, 54 tephra and cryptotephra horizons have been found in the upper 460m of this sequence. Tephrochronology and tuning biogeochemical proxy data to orbital parameters revealed that the upper 247.8m represent the last 637 kyr. The multi-proxy data set covering these 637 kyr indicates longterm variability. Some proxies show a change from generally cooler and wetter to drier and warmer glacial and interglacial periods around 300 ka. Short-term environmental change caused, for example, by tephra deposition or the climatic impact of millennial-scale Dansgaard–Oeschger and Heinrich events are superimposed on the long-term trends. Evolutionary studies on the extant fauna indicate that Lake Ohrid was not a refugial area for regional freshwater animals. This differs from the surrounding catchment, where the mountainous setting with relatively high water availability provided a refuge for temperate and montane trees during the relatively cold and dry glacial periods. Although Lake Ohrid experienced significant environmental change over the last 637 kyr, preliminary molecular data from extant microgastropod species do not indicate significant changes in diversification rate during this period. The reasons for this constant rate remain largely unknown, but a possible lack of environmentally induced extinction events in Lake Ohrid and/or the high resilience of the ecosystems may have played a role.
    Description: Published
    Description: 2033–2054
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: Lake Ohrid, Pleistocene, ICDP ; Stratigraphy ; Environmental changes ; Lake sediments
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...