GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2020-02-06
    Description: Highlights • A stack of four BSRs were identified in levee deposits of the Danube deep-sea fan. • The multiple BSRs are not caused by overpressure compartments. • The multiple BSRs reflect stages of stable sealevel lowstands during glacial times. • Gas underneath the previous GHSZ does not start to migrate for thousands of years. Abstract High-resolution 2D seismic data reveal the character and distribution of up to four stacked bottom simulating reflectors (BSR) within the channel-levee systems of the Danube deep-sea fan. The theoretical base of the gas hydrate stability zone (GHSZ) calculated from regional geothermal gradients and salinity data is in agreement with the shallowest BSR. For the deeper BSRs, BSR formation due to overpressure compartments can be excluded because the necessary gas column would exceed the vertical distance between two overlying BSRs. We show instead that the deeper BSRs are likely paleo BSRs caused by a change in pressure and temperature conditions during different limnic phases of the Black Sea. This is supported by the observation that the BSRs correspond to paleo seafloor horizons located in a layer between a buried channel-levee system and the levee deposits of the Danube channel. The good match of the observed BSRs and the BSRs predicted from deposition of these sediment layers indicates that the multiple BSRs reflect stages of stable sealevel lowstands possibly during glacial times. The observation of sharp BSRs several 10,000 of years but possibly up to 300,000 yr after they have left the GHSZ demonstrates that either hydrate dissociation does not take place within this time frame or that only small amounts of gas are released that can be transported by diffusion. The gas underneath the previous GHSZ does not start to migrate for several thousands of years.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-07-10
    Description: Submarine mud volcanos at the seafloor are surface expressions of fluid flow systems within the seafloor. Since the electrical resistivity of the seafloor is mainly determined by the amount and characteristics of fluids contained within the sediment's pore space, electromagnetic methods offer a promising approach to gain insight into a mud volcano's internal resistivity structure. To investigate this structure, we conducted a controlled source electromagnetic experiment, which was novel in the sense that the source was deployed and operated with a remotely operated vehicle, which allowed for a flexible placement of the transmitter dipole with two polarization directions at each transmitter location. For the interpretation of the experiment, we have adapted the concept of rotational invariants from land-based electromagnetics to the marine case by considering the source normalized tensor of horizontal electric field components. We analyse the sensitivity of these rotational invariants in terms of 1-D models and measurement geometries and associated measurement errors, which resemble the experiment at the mud volcano. The analysis shows that any combination of rotational invariants has an improved parameter resolution as compared to the sensitivity of the pure radial or azimuthal component alone. For the data set, which was acquired at the ‘North Alex’ mud volcano, we interpret rotational invariants in terms of 1-D inversions on a common midpoint grid. The resulting resistivity models show a general increase of resistivities with depth. The most prominent feature in the stitched 1-D sections is a lens-shaped interface, which can similarly be found in a section from seismic reflection data. Beneath this interface bulk resistivities frequently fall in a range between 2.0 and 2.5 Ωm towards the maximum penetration depths. We interpret the lens-shaped interface as the surface of a collapse structure, which was formed at the end of a phase of activity of an older mud volcano generation and subsequently refilled with new mud volcano sediments during a later stage of activity. Increased resistivities at depth cannot be explained by compaction alone, but instead require a combination of compaction and increased cementation of the older sediments, possibly in connection to trapped, cooled down mud volcano fluids, which have a depleted chlorinity. At shallow depths (≤50 m) bulk resistivities generally decrease and for locations around the mud volcano's centre 1-D models show bulk resistivities in a range between 0.5 and 0.7 Ωm, which we interpret in terms of gas saturation levels by means of Archie's Law. After a detailed analysis of the material parameters contained in Archie's Law we derive saturation levels between 0 and 25 per cent, which is in accordance with observations of active degassing and a reflector with negative polarity in the seismics section just beneath the seafloor, which is indicative of free gas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-10-24
    Description: The upward migration of gas through marine sediments typically manifests itself as gas chimneys or pipes in seismic images and can lead to the formation of cold seeps. Gas seepage is often linked to morphological features like seabed domes, pockmarks, and carbonate build-ups. In this context, sediment doming is discussed to be a precursor of pockmark formation. Here, we present parametric echosounder, sidescan sonar, and two-dimensional seismic data from Opouawe Bank, offshore New Zealand, providing field evidence for sediment doming. Geomechanical quantification of the stresses required for doming show that the calculated gas column heights are geologically feasible and consistent with the observed geophysical data. The progression from channeled gas flow to gas trapping results in overpressure build-up in the shallow sediment. Our results suggest that by breaching of domed seafloor sediments a new seep site can develop, but contrary to ongoing discussion this does not necessarily lead to the formation of pockmarks.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-01-11
    Description: The sedimentary succession of the anoxic, deep Black Sea Basin is an ideal location for organic matter preservation and microbial methane generation. In the depth range of the gas hydrate stability zone (GHSZ) methane gas forms methane hydrates and presumably large accumulations of gas hydrate exist in porous sediments, such as those encountered on the Danube deep-sea fan. High-resolution P-Cable 3D seismic data reveals the character and distribution of up to four stacked bottom simulating reflectors (BSR) within the channel-levee systems of the Danube deep-sea fan. These anomalous BSRs were first described by Popescu et al. (2006). The geological processes that lead to multiple BSRs are still poorly understood. The theoretical base of the GHSZ calculated from regional temperature gradients and salinity data is in agreement with the shallowest BSR in the area. We have tested two hypotheses that may explain the formation of the lower BSRs. The first hypothesis is that the lower BSRs are formed by overpressure compartments. Large amounts of free gas below the BSRs are trapped in the pore space increasing the pressure above hydrostatic condition up to a level where gas hydrates are stable again. The second hypothesis is that the lower BSRs are linked to the growth of the Danube fan. Sediment deposits from the outer levee of the youngest channel cover the area hosting multiple BSRs. The youngest channel developed during the last sea level lowstand that is correlated with the Neo-Euxinian that started 23,000 yrs. BP. We propose that the rapid sediment loading during sea level lowstands is a key factor for the preservation of paleo-BSRs in the study area.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-09-26
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  [Poster] In: 13. Gas In Marine Sediments (GIMS 13), 19.- 22.09.2016, Tromsø, Norway .
    Publication Date: 2016-10-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-01-14
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-09-23
    Description: This study presents 2D seismic reflection data, seismic velocity analysis, as well as geochemical and isotopic porewater compositions from Opouawe Bank on New Zealand’s Hikurangi subduction margin, providing evidence for essentially pure methane gas seepage. The combination of geochemical information and seismic reflection images is an effective way to investigate the nature of gas migration beneath the seafloor, and to distinguish between water advection and gas ascent. The maximum source depth of the methane that migrates to the seep sites on Opouawe Bank is 1,500–2,100 m below seafloor, generated by low-temperature degradation of organic matter via microbial CO2 reduction. Seismic velocity analysis enabled identifying a zone of gas accumulation underneath the base of gas hydrate stability (BGHS) below the bank. Besides structurally controlled gas migration along conduits, gas migration also takes place along dipping strata across the BGHS. Gas migration on Opouawe Bank is influenced by anticlinal focusing and by several focusing levels within the gas hydrate stability zone.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2017-04-11
    Description: Highlights • Magmatism, detachment faulting and changing symmetry of crustal accretion at a ridge segment end. • PmPs from an OCC argue for constant magma production during detachment faulting. • Refraction seismic modelling and PmP events reveal very thin (4 km) oceanic crust at a segment end. A wide-angle seismic section across the Mid-Atlantic Ridge just south of the Ascension transform system reveals laterally varying crustal thickness, and to the east a strongly distorted Moho that appears to result from slip along a large-offset normal fault, termed an oceanic detachment fault. Gravity modelling supports the inferred crustal structure. We investigate the interplay between magmatism, detachment faulting and the changing asymmetry of crustal accretion, and consider several possible scenarios. The one that appears most likely is remarkably simple: an episode of detachment faulting which accommodates all plate divergence and results in the westward migration of the ridge axis, is interspersed with dominantly magmatic and moderately asymmetric (most on the western side) spreading which moves the spreading axis back towards the east. Following the runaway weakening of a normal fault and its development into an oceanic detachment fault, magma both intrudes the footwall to the fault, producing a layer of gabbro (subsequently partially exhumed).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-05-11
    Description: Highlights: - Analysis of a combined new high-resolution 2D seismic and bathymetric data set offshore Mt Etna - Extensional domains are mapped at the shallow subsurface of the continental margin - Compressional structures are mapped at the toe of the continental margin - A coupled volcano edifice / continental margin instability is proposed Mount Etna is the largest active volcano in Europe. Instability of its eastern flank is well documented onshore, and continuously monitored by geodetic and InSAR measurements. Little is known, however, about the offshore extension of the eastern volcano flank, defining a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired a new high-resolution 2D reflection seismic dataset. The data provide new insights into the heterogeneous geology and tectonics at the continental margin offshore Mt Etna. The submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. A compressional regime is found at the toe of the continental margin, which is bound to a complex basin system. Both, the clear link between on- and offshore tectonic structures as well as the compressional regime at the easternmost flank edge, indicate a continental margin gravitational collapse as well as spreading to be present at Mt Etna. Moreover, we find evidence for the offshore southern boundary of the moving flank, which is identified as a right lateral oblique fault north of Catania Canyon. Our findings suggest a coupled volcano edifice / continental margin instability at Mt Etna, demonstrating first order linkage between on- and offshore tectonic processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...