GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (9)
  • 2015-2019  (9)
Document type
Source
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Algueró-Muñiz, Maria; Horn, Henriette G; Alvarez-Fernandez, Santiago; Spisla, Carsten; Aberle, Nicole; Bach, Lennart Thomas; Guan, WanChun; Achterberg, Eric Pieter; Riebesell, Ulf; Boersma, Maarten (2019): Analyzing the Impacts of Elevated-CO2 Levels on the Development of a Subtropical Zooplankton Community During Oligotrophic Conditions and Simulated Upwelling. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00061
    Publication Date: 2024-03-06
    Description: Ocean acidification (OA) is affecting marine ecosystems through changes in carbonate chemistry that may influence consumers of phytoplankton, often via trophic pathways. Using a mesocosm approach, we investigated OA effects on a subtropical zooplankton community during oligotrophic, bloom, and post-bloom phases under a range of different pCO2 levels (from ∼400 to ∼1480 μatm).
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-06
    Keywords: Ammonium; BIOACID; Biogenic silica; Biological Impacts of Ocean Acidification; Chlorophyll a; Day of experiment; Event label; KOSMOS_2016; KOSMOS_2016_Mesocosm-M2; KOSMOS_2016_Mesocosm-M3; KOSMOS_2016_Mesocosm-M4; KOSMOS_2016_Mesocosm-M5; KOSMOS_2016_Mesocosm-M6; KOSMOS_2016_Mesocosm-M7; KOSMOS_2016_Mesocosm-M8; KOSMOS Gran Canaria; MESO; Mesocosm experiment; Mesocosm label; Nitrogen oxide; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Phase; Phosphate; Shannon Diversity Index; Silicate
    Type: Dataset
    Format: text/tab-separated-values, 1608 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-06
    Description: Using a mesocosm approach, we investigated ocean acidification effects on a subtropical zooplankton community during oligotrophic, bloom, and post-bloom phases under a range of different pCO2 levels (from ~400 to ~1480 µatm). To do that, we simulated an upwelling event by adding 650 m-depth nutrient-rich water to the mesocosms, which initiated a phytoplankton bloom. The most abundant mesozooplankters were calanoid copepods, which did not respond to CO2 treatments during the oligotrophic phase of the experiment but were found in higher abundance under medium- and high-pCO2 conditions towards the end of the experiment, most likely as a response to increased phyto- and microzooplankton standing stocks. The second most abundant mesozooplankton taxon were appendicularians, which did not show a response to the different pCO2 treatments. Overall, CO2 effects on zooplankton seem to be primarily transmitted through significant CO2 effects on phytoplankton and therefore indirect pathways.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of experiment; Depth, top/min; DEPTH, water; Event label; Fish larvae; KOSMOS_2014; KOSMOS_2014_Atlantic-Reference; KOSMOS_2014_Mesocosm-M1; KOSMOS_2014_Mesocosm-M2; KOSMOS_2014_Mesocosm-M3; KOSMOS_2014_Mesocosm-M4; KOSMOS_2014_Mesocosm-M5; KOSMOS_2014_Mesocosm-M6; KOSMOS_2014_Mesocosm-M7; KOSMOS_2014_Mesocosm-M8; KOSMOS_2014_Mesocosm-M9; MESO; Mesocosm experiment; Mesozooplankton; Subtropical North Atlantic; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 2669 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-06
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Biomass as carbon per volume; Day of experiment; Event label; Genus; KOSMOS_2016; KOSMOS_2016_Mesocosm-M2; KOSMOS_2016_Mesocosm-M3; KOSMOS_2016_Mesocosm-M4; KOSMOS_2016_Mesocosm-M5; KOSMOS_2016_Mesocosm-M6; KOSMOS_2016_Mesocosm-M7; KOSMOS_2016_Mesocosm-M8; KOSMOS Gran Canaria; MESO; Mesocosm experiment; Mesocosm label; Phase
    Type: Dataset
    Format: text/tab-separated-values, 7300 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-06
    Keywords: Abundance; BIOACID; Biological Impacts of Ocean Acidification; Day of experiment; Event label; Genus; KOSMOS_2016; KOSMOS_2016_Mesocosm-M2; KOSMOS_2016_Mesocosm-M3; KOSMOS_2016_Mesocosm-M4; KOSMOS_2016_Mesocosm-M5; KOSMOS_2016_Mesocosm-M6; KOSMOS_2016_Mesocosm-M7; KOSMOS_2016_Mesocosm-M8; KOSMOS Gran Canaria; MESO; Mesocosm experiment; Mesocosm label; Phase
    Type: Dataset
    Format: text/tab-separated-values, 2455 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-06
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Biomass, total; Carbon quota, average; Day of experiment; Event label; KOSMOS_2016; KOSMOS_2016_Mesocosm-M2; KOSMOS_2016_Mesocosm-M3; KOSMOS_2016_Mesocosm-M4; KOSMOS_2016_Mesocosm-M5; KOSMOS_2016_Mesocosm-M6; KOSMOS_2016_Mesocosm-M7; KOSMOS_2016_Mesocosm-M8; KOSMOS Gran Canaria; MESO; Mesocosm experiment; Mesocosm label; Phase
    Type: Dataset
    Format: text/tab-separated-values, 734 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-06
    Keywords: Abundance per volume; BIOACID; Biological Impacts of Ocean Acidification; Day of experiment; Event label; Genus; KOSMOS_2016; KOSMOS_2016_Mesocosm-M2; KOSMOS_2016_Mesocosm-M3; KOSMOS_2016_Mesocosm-M4; KOSMOS_2016_Mesocosm-M5; KOSMOS_2016_Mesocosm-M6; KOSMOS_2016_Mesocosm-M7; KOSMOS_2016_Mesocosm-M8; KOSMOS Gran Canaria; MESO; Mesocosm experiment; Mesocosm label; Phase
    Type: Dataset
    Format: text/tab-separated-values, 7308 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bach, Lennart Thomas; Hernández-Hernández, Nauzet; Taucher, Jan; Spisla, Carsten; Sforna, Claudia; Riebesell, Ulf; Arístegui, Javier (2019): Effects of Elevated CO2 on a Natural Diatom Community in the Subtropical NE Atlantic. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00075
    Publication Date: 2024-03-06
    Description: Diatoms are silicifying phytoplankton contributing about one quarter to primary 79 production on Earth. Ocean acidification (OA) could alter the competitiveness of diatoms 80 relative to other taxa and/or lead to shifts among diatom species. In spring 2016, we set 81 up a plankton community experiment at the coast of Gran Canaria (Canary Islands, 82 Spain) to investigate the response of subtropical diatom assemblages to elevated 83 84 seawater pCO2.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: Ocean acidification (OA) is affecting marine ecosystems through changes in carbonate chemistry that may influence consumers of phytoplankton, often via trophic pathways. Using a mesocosm approach, we investigated OA effects on a subtropical zooplankton community during oligotrophic, bloom, and post-bloom phases under a range of different pCO2 levels (from 400 to 1480 μatm). Furthermore, we simulated an upwelling event by adding 650 m-depth nutrient-rich water to the mesocosms, which initiated a phytoplankton bloom. No effects of pCO2 on the zooplankton community were visible in the oligotrophic conditions before the bloom. The zooplankton community responded to phytoplankton bloom by increased abundances in all treatments, although the response was delayed under high-pCO2 conditions. Microzooplankton was dominated by small dinoflagellates and aloricate ciliates, which were more abundant under medium- to high-pCO2 conditions. The most abundant mesozooplankters were calanoid copepods, which did not respond to CO2 treatments during the oligotrophic phase of the experiment but were found in higher abundance under medium- and high-pCO2 conditions toward the end of the experiment, most likely as a response to increased phyto- and microzooplankton standing stocks. The second most abundant mesozooplankton taxon were appendicularians, which did not show a response to the different pCO2 treatments. Overall, CO2 effects on zooplankton seemed to be primarily transmitted through significant CO2 effects on phytoplankton and therefore indirect pathways. We conclude that elevated pCO2 can change trophic cascades with significant effects on zooplankton, what might ultimately affect higher trophic levels in the future.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; DATE/TIME; Day of experiment; Depth, top/min; DEPTH, water; Entire community; Event label; Field experiment; Fish larvae; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); KOSMOS_2014; KOSMOS_2014_Atlantic-Reference; KOSMOS_2014_Mesocosm-M1; KOSMOS_2014_Mesocosm-M2; KOSMOS_2014_Mesocosm-M3; KOSMOS_2014_Mesocosm-M4; KOSMOS_2014_Mesocosm-M5; KOSMOS_2014_Mesocosm-M6; KOSMOS_2014_Mesocosm-M7; KOSMOS_2014_Mesocosm-M8; KOSMOS_2014_Mesocosm-M9; Macro-nutrients; MESO; Mesocosm experiment; Mesocosm or benthocosm; Mesozooplankton; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Salinity; Subtropical North Atlantic; Temperate; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 3991 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...