GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phytoplankton  (2)
  • 2015-2019  (2)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Ecological Modelling 376 (2018): 54-67, doi:10.1016/j.ecolmodel.2018.03.003.
    Description: The present study describes the responses of summer phytoplankton biomass to changes in top-down forcing (expressed as zooplankton mortality) in three ecosystems (the North Sea, the Baltic Sea and the Nordic Seas) across different 3D ecosystem models. In each of the model set-ups, we applied the same changes in the magnitude of mortality (±20%) of the highest trophic zooplankton level (Z1). Model results showed overall dampened responses of phytoplankton relative to Z1 biomass. Phytoplankton responses varied depending on the food web structure and trophic coupling represented in the models. Hence, a priori model assumptions were found to influence cascades and pathways in model estimates and, thus, become highly relevant when examining ecosystem pressures such as fishing and climate change. Especially, the different roles and parameterizations of additional zooplankton groups grazed by Z1, and their importance for the outcome, emphasized the need for better calibration data. Spatial variability was high within each model indicating that physics (hydrodynamics and temperature) and nutrient dynamics also play vital roles for ecosystem responses to top-down effects. In conclusion, the model comparison indicated that changes in top-down forcing in combination with the modelled food-web structure affect summer phytoplankton biomass and, thereby, indirectly influence water quality of the systems.
    Description: The work was supported by the EU grant “Vectors of Change in Oceans and Seas, Marine Life, Impact and Economic Sectors” (Vectors, FP7/2010-2013) and The Danish Council for Strategic Research to the project “Integrated Management of Agriculture, Fishery, Environment and Economy” (IMAGE, grant no. 09-067259).
    Keywords: Plankton functional types ; Trophic cascades ; Zooplankton mortality ; Phytoplankton ; Ensemble modelling
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 2086–2093, doi:10.1002/2016GL067937.
    Description: Phytoplankton in Antarctic coastal polynyas has a temporally short yet spatially variant growth window constrained by ice cover and day length. Using 18-year satellite measurements (1997–2015) of sea ice and chlorophyll concentrations, we assessed the synchronicity between the spring phytoplankton bloom and light availability, taking into account the ice cover and the incident solar irradiance, for 50 circum-Antarctic coastal polynyas. The synchronicity was strong (i.e., earlier ice-adjusted light onset leads to earlier bloom and vice versa) in most of the western Antarctic polynyas but weak in a majority of the eastern Antarctic polynyas. The west-east asymmetry is related to sea ice production rate: the formation of many eastern Antarctic polynyas is associated with strong katabatic wind and high sea ice production rate, leading to stronger water column mixing that could damp phytoplankton blooms and weaken the synchronicity.
    Description: This research was funded by NASA (grant NNX14AH74G) and U.S. National Science Foundation (grant PLR-1341558).
    Description: 2016-09-05
    Keywords: Phenology ; Synchronicity ; Phytoplankton ; Ice retreat ; Antarctic polynya
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...