GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-08-24
    Description: In a bid to further understand processes that influence deep-sea epibenthic megafauna, which fulfil critical roles in the global carbon cycle, we present data from the Arctic Long-Term Ecological Research observatory HAUSGARTEN, in the Fram Strait, showing significant temporal changes in total biomass of 3 key organisms (Kolga hyalina, Elpidia heckeri and Mohnia spp.) at stations N3, HG-IV and S3 during repeated deployments over a time series spanning 2004−2015. Overall, all species investigated displayed a similar reproduction/recruitment cycle, with increasing mean mass per individual leading to decreases in abundance, and vice versa. However, there were 3 ‘events’ that deviated from this pattern. The first was a mass reproduction event of E. heckeri at HG-IV from 2012 onwards, likely due to an increased carrying capacity. The second event involved migration of K. hyalina from HG-IV between 2004−2007, with a return in 2011. This coincided with a shift in the composition of the particle flux at the station. The final event was a mass migration of K. hyalina to N3 between 2004 (0 ind. m−2) and 2007 (4.765 ± 0.084 ind. m−2). This event coincided with a 4-fold increase in phytodetrital food availability at the seafloor at N3. Our results highlight the importance of time-series studies to ascertain the key factors that influence epibenthic megafaunal communities. It also highlights the fact that more needs to be done in understanding the life history of these organisms, as this understanding is, so far, widely lacking.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Experimental Marine Biology and Ecology, ELSEVIER SCIENCE BV, 511, pp. 1-9, ISSN: 0022-0981
    Publication Date: 2018-11-10
    Description: Benthic fauna constantly modifies their physical, chemical and biological environment. The permanent biological reworking of surface sediments mediates biogeochemical processes at the seafloor and is, therefore, of global importance. There are numerous studies measuring the rate and extent of bioturbation worldwide, however, information on mixing rates in the deep ocean and especially in the Polar Regions are extremely scarce; to our knowledge there is, by now, only a single study providing bioturbation rates from the deep Arctic Ocean. The present study presents mixing rates and mixed layer depths for the deep seafloor at the LTER (Long-Term Ecological Research) observatory HAUSGARTEN in Fram Strait, Arctic Ocean. Two stations at similar water depths (2400 m and 2500 m water depth, respectively) but approx. 55 km apart from each other were chosen to carry out long-term (2 and 4 years, respectively) in situ bioturbation experiments using luminophores as a tracer. Biodiffusion-like mixing rates Db at the experimental sites were rather similar (0.26 cm2 a-1 at HG-IV; 0.28 cm2 a-1 at S3); slightly (non-significantly) higher Db values at the southern HAUSGARTEN site S3 could be explained by more favorable environmental conditions and related differences in the faunal composition. Indications for a non-local transport of sediment particles from the surface to deeper parts of the sediment, resulting in higher values for the Non-Local Index (NLI), could only be found for the central HAUSGARTEN site HG-IV. Elevated densities of burrowing megafauna at HG-IV, compared to S3, might be responsible for the subsurface maxima in luminophore distribution and comparably higher NLI values at the central HAUSGARTEN site (5.37 at HG-IV; 3.26 at S3). Mixed layer depths L at the two sites were almost identical; considerable mixing of surface sediments occurred down to max. 6-7 cm sediment depth.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-17
    Description: In this paper the concept of resilience is discussed on the base of 13 case studies from the German branch of the International Long-Term Ecological Research Program. In the introduction the resilience approach is presented as one possibility to describe ecosystem dynamics. The relations with the concepts of adaptability and ecological integrity are discussed and the research questions are formulated. The focal research objectives are related to the conditions of resilient behaviour of ecosystems, the role of spatio-temporal scales, the differences between short- or long-term dynamics, the basic methodological requirements to exactly define resilience, the role of the reference state and indicators and the suitability of resilience as a management concept. The main part of the paper consists of 13 small case study descriptions, which demonstrate phase transitions and resilient dynamics of several terrestrial and aquatic ecosystems at different time scales. In the discussion, some problems arising from the interpretation of the time series are highlighted and discussed. The topics of discussion are the conceptual challenges of the resilience approach, methodological problems, the role of indicator selection, the complex interactions between different disturbances, the significance of time scales and a comparison of the case studies. The article ends with a conclusion which focuses on the demand to link resilience with adaptability, in order to support the long-term dynamics of ecosystem development.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Marine Ecology-Progress Series, INTER-RESEARCH, 556, pp. 45-57, ISSN: 0171-8630
    Publication Date: 2017-01-31
    Description: Stones released by melting icebergs are called dropstones, and these stones constitute island-like hard-bottom habitats at high latitudes. In 2012, dropstone megafauna in the HAUSGARTEN observatory in the Fram Strait was sampled photographically. We tested the hypothesis that dropstones would have the same species distribution patterns as terrestrial islands, using 5 patterns commonly found in the classical island literature. Higher richness, diversity, and abundance of fauna occurred on larger stones and on stones near a deep-water rocky reef. These patterns can be explained by the greater surface area of larger stones, the exposure of larger stones to faster current higher in the benthic boundary layer, and increased larval supply from the rocky reef. Some pairs of morphotypes (12 pairs out of 56 morphotypes and 1540 possible pairs) co-occurred less often than expected by chance. While similar patterns have been attributed to interspecific competition in the classical island literature, we offer alternative mechanisms for dropstones. Non-random co-occurrence on dropstones may be explained by larval dispersal. Dropstone fauna had an overdispersed (clumped) distribution, so pairs of morphotypes may have negative non-random co-occurrence simply because short larval life and limited dispersal ability prevent them from having randomly overlapping distributions. In addition, we found 8 morphotype pairs that co-occurred more often than expected by chance because of epibiontism. The patterns found in dropstone communities resemble terrestrial islands, but different mechanisms may be responsible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-17
    Description: Time-series studies of arctic marine ecosystems are rare. This is not surprising since polar regions are largely only accessible by means of expensive modern infrastructure and instrumentation. In 1999, the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) established the LTER (Long-Term Ecological Research) observatory HAUSGARTEN crossing the Fram Strait at about 79°N. Multidisciplinary investigations covering all parts of the open-ocean ecosystem are carried out at a total of 21 permanent sampling sites in water depths ranging between 250 and 5,500 m. From the outset, repeated sampling in the water column and at the deep seafloor during regular expeditions in summer months was complemented by continuous year-round sampling and sensing using autonomous instruments in anchored devices (i.e., moorings and free-falling systems). The central HAUSGARTEN station at 2,500 m water depth in the eastern Fram Strait serves as an experimental area for unique biological in situ experiments at the seafloor, simulating various scenarios in changing environmental settings. Long-term ecological research at the HAUSGARTEN observatory revealed a number of interesting temporal trends in numerous biological variables from the pelagic system to the deep seafloor. Contrary to common intuition, the entire ecosystem responded exceptionally fast to environmental changes in the upper water column. Major variations were associated with a warm water anomaly evident in surface waters in eastern parts of the Fram Strait between 2005 and 2008. However, even after 15 years of intense time-series work at HAUSGARTEN, we cannot yet predict with complete certainty whether these trends indicate lasting alterations due to anthropologically-induced global environmental changes of the system, or whether they reflect natural variability on multiyear time-scales, for example, in relation to decadal oscillatory atmospheric processes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...