GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • Copernicus Publications on behalf of the European Geosciences Union  (1)
  • Kiel : GEOMAR Helmholtz-Zentrum für Ozeanforschung  (1)
  • 2015-2019  (3)
Publisher
Language
Years
Year
  • 1
    Keywords: Forschungsbericht ; Halogenkohlenwasserstoffe ; Meeresbiologie
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (28 Seiten, 2,85 MB) , Illustrationen, Diagramme, Karten
    Language: German
    Note: Förderkennzeichen BMBF 03G0235A , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Atmospheres, 123 (10). pp. 5720-5738.
    Publication Date: 2021-02-08
    Description: Halogen- and sulfur-containing compounds are supersaturated in the surface ocean, which results in their emission to the atmosphere. These compounds can be transported to the stratosphere, where they impact ozone, the background aerosol layer, and climate. In this study we calculate the seasonal and interannual variability of transport from the West Indian Ocean (WIO) surface to the stratosphere for 2000-2016 with the Lagrangian transport model FLEXPART using ERA-Interim meteorological fields. We investigate the transport relevant for very short lived substances (VSLS) with tropospheric lifetimes corresponding to dimethylsulfide (1 day), methyl iodide (CH3I, 3.5 days), bromoform (CHBr3, 17 days), and dibromomethane (CH2Br2, 150 days). The stratospheric source gas injection of VSLS tracers from the WIO shows a distinct annual cycle associated with the Asian monsoon. Over the 16-year time series, a slight increase in source gas injection from the WIO to the stratosphere is found for all VSLS tracers and during all seasons. The interannual variability shows a relationship with sea surface temperatures in the WIO as well as the El Niño-Southern Oscillation. During boreal spring of El Niño, enhanced stratospheric injection of VSLS from the tropical WIO is caused by positive sea surface temperature anomalies and enhanced vertical uplift above the WIO. During boreal fall of La Niña, strong injection is related to enhanced atmospheric upward motion over the East Indian Ocean and a prolonged Indian summer monsoon season. Related physical mechanisms and uncertainties are discussed in this study
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 17 (2017): 10837–10854, doi:10.5194/acp-17-10837-2017.
    Description: A suite of oxygenated volatile organic compounds (OVOCs – acetaldehyde, acetone, propanal, butanal and butanone) were measured concurrently in the surface water and atmosphere of the South China Sea and Sulu Sea in November 2011. A strong correlation was observed between all OVOC concentrations in the surface seawater along the entire cruise track, except for acetaldehyde, suggesting similar sources and sinks in the surface ocean. Additionally, several phytoplankton groups, such as haptophytes or pelagophytes, were also correlated to all OVOCs, indicating that phytoplankton may be an important source of marine OVOCs in the South China and Sulu seas. Humic- and protein-like fluorescent dissolved organic matter (FDOM) components seemed to be additional precursors for butanone and acetaldehyde. The measurement-inferred OVOC fluxes generally showed an uptake of atmospheric OVOCs by the ocean for all gases, except for butanal. A few important exceptions were found along the Borneo coast, where OVOC fluxes from the ocean to the atmosphere were inferred. The atmospheric OVOC mixing ratios over the northern coast of Borneo were relatively high compared with literature values, suggesting that this coastal region is a local hotspot for atmospheric OVOCs. The calculated amount of OVOCs entrained into the ocean seemed to be an important source of OVOCs to the surface ocean. When the fluxes were out of the ocean, marine OVOCs were found to be enough to control the locally measured OVOC distribution in the atmosphere. Based on our model calculations, at least 0.4 ppb of marine-derived acetone and butanone can reach the upper troposphere, where they may have an important influence on hydrogen oxide radical formation over the western Pacific Ocean.
    Description: This work was supported by the EU project SHIVA under grant agreement no. FP7-ENV- 2007-1-226224 and by the BMBF grants SHIVA-Sonne (FKZ: 03G0218A). Astrid Bracher and Wee Cheah were funded via the HGF Young Investigator Group PHYTOOPTICS (VH-NG-300) from the Helmholtz Association through the President. Astrid Bracher’s contribution was also partly funded by ESRIN/ESA within the SEOM (Scientific Exploration of operational missions) – Sentinel for Science Synergy (SY-4Sci Synergy) program via the project SynSenPFT. Additional funding for Cathleen Schlundt, Christa A. Marandino and Sinikka T. Lennartz came from the Helmholtz Young Investigator Group of Christa A. Marandino, TRASE-EC (VH-NG-819), from the Helmholtz Association through the President’s Initiative and Networking Fund and the GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...