GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer  (4)
  • INTER-RESEARCH  (2)
  • 2015-2019  (4)
  • 1995-1999  (1)
  • 1920-1924  (1)
  • 1
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The sympagic (=ice-associated) amphipod Gammarus wilkitzkii usually lives attached to the underside of Arctic sea ice. During an expedition to the Greenland Sea in May/June 1997, high numbers of this species were found in pelagic Rectangular Midwater Trawl catches (0–500 m water depth) in an ice-free area, 35–42 km away from the ice edge. The amphipods seemed to have maintained position in the water column for at least 4 days. Mean biomass data (length: 2.9 cm, organic content: 73% dry mass), gut fullness (〉50% in 85% of specimens) and sex ratio (females:males = 1:1.5) of these amphipods were very similar to values for under-ice populations. Due to their relatively high body density (mean: 1.134 g cm−3), the energy demand for swimming was assumed to be high. Measurements of oxygen consumption of swimming and resting amphipods (8.8 and 4.0 J g wet mass−1 day−1, respectively) suggested that, from an energetic point of view, G. wilkitzkii would maintain position in an ice-free water column for the time period.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Lung 58 (1924), S. 481-487 
    ISSN: 1432-1750
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: We conducted a year-round mesozooplankton study in the Arctic Kongsfjord from August 1998 until July 1999 to investigate seasonal abundance and vertical as well as stage distributions of the prevalent taxa. It is the first investigation in Kongsfjord that covers the Arctic winter season and provides reasonable estimates also of small-sized copepod species. Abundant smaller copepods comprised Oithona similis, Pseudocalanus minutus, Microcalanus spp., Triconia borealis and Acartia longiremis. Among the larger copepods, Calanus finmarchicus, C. glacialis, C. hyperboreus and Metridia longa dominated. The thecosome pteropod Limacina helicina was also an important component. Abundance maxima occurred in November (988,669 ind. m−2) with one to two orders of magnitude higher numbers as compared to all other months (39,832–200,067 ind. m−2). The summers of 1998 and 1999 were characterized by intrusions of Atlantic water, but the community was not entirely dominated by advected boreal species. During winter, the majority of the mesozooplankton occurred below 100 m. Advection is the most likely reason for the accumulation of zooplankton at depth in winter, but local production may also contribute to high overwintering numbers. Much lower abundances of most species in spring suggest high winter mortality and emphasize the importance of sufficient reproductive success during the previous summer to ensure enough winter survivors as seed stock for the coming reproductive season. This study was conducted prior to the recent warming trend in the Arctic. Therefore, it provides valuable baseline data and allows comparing present and future states of the zooplankton community in Kongsfjord.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Marine Ecology-Progress Series, INTER-RESEARCH, 625, pp. 41-52, ISSN: 0171-8630
    Publication Date: 2019-10-09
    Description: Environmental fluctuations can impose energetic constraints on organisms in terms of food shortage or compensation for metabolic stress. To better understand the biochemical strategies that support adaptive physiological processes in variable environments, we studied the lipid dynamics of the brown shrimp Crangon crangon and the pink shrimp Pandalus montagui by analysing their midgut glands during an annual cycle. Both species have an overlapping distribu- tion range in the southern North Sea, but differ in their habitat preferences, reproductive strate- gies, and life-history traits. C. crangon showed minor total lipid accumulation in their midgut glands, ranging between 14 and 17% of dry mass (DM), dominated by phospholipids. In contrast, P. montagui stored significantly larger amounts of total lipid (47−70% DM, mainly triacylglycer- ols) and showed a distinct seasonal cycle in lipid accumulation with a maximum in summer. Fatty acid trophic markers indicated a wide food spectrum for both species, with higher preferences of P. montagui for microalgae. In C. crangon, feeding preferences were less distinct due the low total lipid levels in the midgut gland. PCA based on fatty acid compositions of both species suggested that C. crangon has a broader dietary spectrum than P. montagui. C. crangon seems to have the capacity to use sufficient energy directly from ingested food to fuel all metabolic requirements, including multiple spawnings, without building up large lipid reserves in the midgut gland. P. montagui, in contrast, relies more on the energy storage function of the midgut gland to over- come food scarcity and to allocate lipids for reproduction.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  EPIC3Handbook on Marine Environment Protection, Cham, Switzerland, Springer, 21 p., pp. 353-373, ISBN: 978-3-319-60156-4
    Publication Date: 2018-02-09
    Description: In this chapter, the effects of temperature change—as a main aspect of climate change—on marine biodiversity are assessed. Starting from a general discussion of species responses to temperature, the chapter presents how species respond to warming. These responses comprise adaptation and phenotypic plasticity as well as range shifts. The observed range shifts show more rapid shifts at the poleward range edge than at the equator-near edge, which probably reflects more rapid immigration than extinction in a warming world. A third avenue of changing biodiversity is change in species interactions, which can be altered by temporal and spatial shifts in interacting species. We then compare the potential changes in biodiversity to actual trends recently addressed in empirical synthesis work on local marine biodiversity, which lead to conceptual issues in quantifying the degree of biodiversity change. Finally we assess how climate change impacts the protection of marine environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    INTER-RESEARCH
    In:  EPIC3Marine Ecology-Progress Series, INTER-RESEARCH, 602, pp. 169-181, ISSN: 0171-8630
    Publication Date: 2018-08-24
    Description: The invasive Asian shore crab Hemigrapsus sanguineus and the native European green crab Carcinus maenas share intertidal habitats along European North Atlantic shores and may compete for food. We evaluated the energy-storing capacities of the 2 species and determined their dietary preferences by means of lipid analysis and fatty acid trophic marker indices. Specimens of both sexes and various sizes were sampled in the rocky intertidal of the island of Helgoland (North Sea) in April, June, August, and October 2015. Total lipids of the midgut glands were significantly higher in H. sanguineus than in C. maenas and followed a distinct seasonal cycle in both sexes (ca. 20−50% of dry mass, DM). The lower lipid contents of C. maenas (ca. 20% of DM) remained at a similar level throughout the seasons. The seasonal differences in the females of H. sanguineus may be due to higher reproductive output and, consequently, lipid turnover, but remain unexplained in males. Trophic indices for Bacillariophyceae, Chlorophyta, and especially Phaeophyceae were higher in H. sanguineus than in C. maenas, suggesting a higher degree of herbivory of the invader. In contrast, the Rhodophyta index was higher in C. maenas. Thus, competition for food between the 2 species will probably be low in habitats rich in macroalgae. The ability of H. sanguineus to utilize mainly energy-poor algae but accumulate high-energy reserves may be an advantage for successfully establishing persistent populations in new habitats.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...