GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Forschungsbericht ; Abwasserreinigung ; Spurenstoff ; Katalysator ; Fentons Reagenz ; Biokatalysator ; Keramischer Filter ; Hybridwerkstoff
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (44 Seiten, 1,43 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 13XP5065D , Verbundnummer 01184533 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-14
    Description: The Toba Caldera on Sumatra, Indonesia is the host of the Young Toba eruption (~74 ka), globally one of the largest and most recognized eruptions during the Quaternary and regionally concentrated in the eastern Indian Ocean. Three older deposits (Middle, and Old Toba Tuff as well as Haranggaol Dacite Tuff) are also attributed to Toba caldera, with their eruption products distributed over the Indian Ocean. We present the Quaternary marine tephra record from an array of 14 sites and 28 holes from deep ocean drilling programs, complementing earlier work on distal to ultra-distal Indian Ocean sediment cores and terrestrial distribution data of Toba deposits. A unique set of major and trace element glass-shard compositions on 115 primary ash layers together with glass shard morphologies, core pictures and statistical analysis support geochemical fingerprinting between marine tephra layers and known deposits from Toba and five so far unidentified medium to large eruptions assigned to northern Sumatra. Additionally, zircon crystallization ages have been determined for the Haranggaol Dacite Tuff resulting in a new maximum eruption age of 1.42 ± 0.034 Ma. Tephra volumes and magma masses for the (co-ignimbrite) fallout are estimated based on the compiled marine tephra distribution that are complemented by published proximal ignimbrite volumes. For YTT the resulting tephra and DRE volumes of 5600 km3 and 3600 km3, respectively, are in between the previous estimates. For MTT (253 km3 DRE), ODT (1550 km3 DRE), HDT (129 km3 DRE), and the five additionally identified eruptions from Northern-Sumatran volcanoes, new magma volumes have been determined. Overall, the Indian Ocean tephra record reveals in one large eruption every 200 kyr in the Quaternary that is derived from northern Sumatra.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-28
    Description: For an extensive decarbonization of district multi-energy systems, efforts are needed that go beyond today’s cogeneration of heat and power in district multi-energy systems. The multitude of existing technical possibilities are confronted with a large variety of existing multi-energy system configurations. The variety impedes the development of universal decarbonization pathways. In order to tackle the decarbonization challenge in existing and distinct districts, this paper calculates a wide range of urban district configurations in an extensive co-simulation based on domain specific submodels. A district multi-energy system comprising a district heating network, a power grid, and cogeneration is simulated for two locations in Germany with locally captured weather data, and for a whole year with variable parameters to configure a power-to-heat operation, building insolation/refurbishment, rooftop photovoltaic orientation, future energy demand scenarios, and district sizes with a temporal resolution of 60 s, in total 3840 variants. The interdependencies and synergies between the electrical low-voltage distribution grid and the district heating network are analysed in terms of efficiency and compliance with network restrictions. Thus, important sector-specific simulations of the heat and the electricity sector are combined in a holistic district multi-energy system co-simulation. The clearly most important impact on emission reduction and fuel consumption is a low heat demand, which can be achieved through thermal refurbishment of buildings. Up to 46 % reduction in CO2 emissions are possible using the surplus electricity from photovoltaics for power-to-heat in combination with central heat storage in the district’s combined heat and power plant. Domestic hot water heated by district heating network in combination with power-to-heat conversion distributed in the district reduces the load on the distribution power grid. Even though the investigated measures already improve the sustainability significantly, providing the energy needed for the production of synthetic fuels remains the crucial challenge on the further path towards net-zero.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-05-24
    Description: The Chukchi Sea is an important transition region for Pacific-origin waters flowing north through the Bering Strait into the Arctic Ocean. The inflowing waters bring heat and freshwater, influencing the structure and variability of the entire Arctic Ocean. Monitoring processes in the Chukchi Sea is crucial for understanding Arctic Ocean variability, especially in a changing climate. While difficult accessibility leads to a lack of oceanographic in-situ measurements in the region, satellite altimetry provides precise information on sea surface at different spatial and temporal scales and can be used for studies of the current patterns. Here we present a novel long-term observational altimetry-based dataset of sea level and ocean currents, created with the implementation of the recent advanced algorithms and special techniques for the reliable detection of leads and determination of sea surface heights in the sea-ice-covered ocean. For the processing of the data, a careful analysis of the standard geophysical corrections was carried out. Altimetry-derived water heights were compared with the sea level from a numerical ocean model and validated against bottom pressure sensors on moorings and tide gauges. The created dataset allows us to observe seasonal and interannual variability of the regional sea level and geostrophic flow. In the first analyses, we investigate the flow through the Bering Strait and its variability in recent years. The divergence of the Alaskan Coastal Current from the coast under the influence of strong winds is assessed, as well as its relation to the strength and position of the Beaufort High.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-09-29
    Description: Leads are not permanently open, but are partially frozen and covered by a thin layer of ice up to about 25 cm thick. This thin ice layer is a hotspot for ocean ventilation as well as for the exchange of heat and moisture between the ocean and the atmosphere. Usually, satellite altimetry is used to determine sea level and its changes. In order to monitor the sea level in the polar oceans, methods have been published in recent years that can detect leads by analysing the shape and backscatter properties of altimeter radar echoes (i.e. waveforms). Here we present an extension of an unsupervised waveform classification of Cryosat-2 SAR observations to identify thin ice surfaces and delineate them from ice-free areas as well as from thicker ice. The unsupervised classification approach identifies similar patterns among a subset of randomly collected waveforms and groups them into a specific number of classes without the use of training data. The classification results are visually compared with thin ice thickness estimates from MODIS-observed ice-surface temperatures and Sentinel-1A/B SAR imagery for co-located datasets. In addition, the waveform derived shape and backscatter parameters are analysed with respect to changing thin ice thickness, revealing strong linear dependencies. The analyses can be used to improve altimeter range estimation and thus to allow for a more reliable determination of the sea surface height in the ice-covered oceans as well as a deeper understanding of the Arctic ice cover.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...