GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
  • 1
    Publication Date: 2024-02-07
    Description: Ecological interactions among phytoplankton occur in a moving fluid environment. Oceanic flows can modulate the competition and coexistence between phytoplankton populations, which in turn can affect ecosystem function and biogeochemical cycling. We explore the impact of submesoscale velocity gradients on phytoplankton ecology using observations, simulations, and theory. Observations reveal that the relative abundance of Synechoccocus oligotypes varies on 1–10 km scales at an ocean front with submesoscale velocity gradients at the same scale. Simulations in realistic flow fields demonstrate that regions of divergence in the horizontal flow field can substantially modify ecological competition and dispersal on timescales of hours to days. Regions of positive (negative) divergence provide an advantage (disadvantage) to local populations, resulting in up to ∼20% variation in community composition in our model. We propose that submesoscale divergence is a plausible contributor to observed taxonomic variability at oceanic fronts, and can lead to regional variability in community composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-05
    Description: Significance Particulate organic carbon (POC) formed by photosynthesis in the sunlit surface ocean fuels the ecosystems in the dark ocean below. We show that mesoscale fronts and eddies, which are ubiquitous physical features in subtropical oceans, generate three-dimensional intrusions connecting the surface to deep ocean. Intrusions are enriched in total POC due to enhancement of small, nonsinking photosynthetic plankton and free-living bacteria that resemble surface microbial communities. Flow-driven export of POC, estimated using an approximation of eddy physics, is the same order of magnitude as export by sinking POC, which was previously thought to dominate export. These observations reveal coupling of surface and deep ocean productivity and biodiversity and give insight into mechanisms by which the ocean transports carbon to depth. Abstract Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-08
    Description: This cruise aimed to identify transport pathways from the surface into the interior ocean during the late winter in the Alborán sea between the Strait of Gibraltar (5°40’W) and the prime meridian. Theory and previous observations indicated that these pathways likely originated at strong fronts, such as the one that separates salty Mediterranean water and the fresher water in owing from the Atlantic. Our goal was to map such pathways and quantify their transport. Since the outcropping isopycnals at the front extend to the deepest depths during the late winter, we planned the cruise at the end of the Spring, prior to the onset of thermal stratification of the surface mixed layer.
    Description: Funding was provided by the Office of Naval Research under Contract No. N000141613130.
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-02
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Freilich, M. A., Mignot, A., Flierl, G. R., & Ferrari, R. Grazing behavior and winter phytoplankton accumulation. Biogeosciences, 18(20), (2021): 5595–5607, https://doi.org/10.5194/bg-18-5595-2021.
    Description: Recent observations have shown that phytoplankton biomass increases in the North Atlantic during winter, even when the mixed layer is deepening and light is limited. Current theories suggest that this is due to a release from grazing pressure. Here we demonstrate that the often-used grazing models that are linear at low phytoplankton concentration do not allow for a wintertime increase in phytoplankton biomass. However, mathematical formulations of grazing as a function of phytoplankton concentration that are quadratic at low concentrations (or more generally decrease faster than linearly as phytoplankton concentration decreases) can reproduce the fall to spring transition in phytoplankton, including wintertime biomass accumulation. We illustrate this point with a minimal model for the annual cycle of North Atlantic phytoplankton designed to simulate phytoplankton concentration as observed by BioGeoChemical-Argo (BGC-Argo) floats in the North Atlantic. This analysis provides a mathematical framework for assessing hypotheses of phytoplankton bloom formation.
    Description: This research has been supported by the NDSEG fellowship and Martin fellowship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...