GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Type of Medium: Book
    Pages: III, 361 S , Ill., graph. Darst
    Series Statement: Technical report / Woods Hole Oceanographic Institution 89-26
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Chaos 4 (1994), S. 355-367 
    ISSN: 1089-7682
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Solitary wave or isolated eddy models are often invoked to explain the longevity of strong nonlinear features in oceans and atmospheres. But when we look at the physics in detail, we find that models of isolated eddies often hinge either on an oversimplification of the dynamics or on constraints which are not appropriate for the observed eddies. In a more complete model, as this study demonstrates, rings (and probably other nonlinear geophysical eddies as well) will interact with their surroundings via Rossby wave radiation, primarily in the barotropic mode. Such wave generation leads to a slow decay of the eddy as energy leaks into the wave field.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 12 (1994), S. 1-18 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Linear Rossby wave dispersion relationships suggest that Jupiter’s Great Red Spot (GRS) is a baroclinic structure embedded in a barotropic shearing zonal flow. Quasi-geostrophic (QG) two-layer simulations support the theory, as long as an infinitely deep zonal flow is assumed. However, once a finite depth of the lower layer is assumed, a self-interaction of the baroclinic eddy component produces a barotropic radiating field, so that the GRS-like eddy can no longer remain compact. Compactness is recovered by explicitly introducing a deep dynamics of the interior for the lower layer, instead of the shallow QG formulation. An implication of the result is a strong coupling of the GRS to a convectively active interior.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of oceanography 51 (1995), S. 145-170 
    ISSN: 1573-868X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The two-dimensional asymmetric merger of two like-signed uniform vorticity patches with different sizes (r i ) and vorticities (q i ) was examined with contour dynamics experiments. We determined the critical centroid distances for merger (d merger), which vortex survived the interaction and the processes involved in the merger. An explicit empirical critical merger distance was established asd merger/r 1 =a·(q 2/q 1)1/2·(r 2/r 1)+b (subscript 1 denotes the properties of the losing [destroyed] vortex and 2 the winning [not destroyed] vortex). The relationship seems applicable for wide range of parameters. The winning vortex was found to be determined primarily by vorticity rather than size. A small but strong enough vortex is absorbed into a larger and weaker vortex and becomes the high vorticity core of the merged vortex. A small and weak vortex is strained out to a thin filament. The vorticity ratio which determined when the first vortex was destroyed while the second survived, (q 2/q 1)win, was established empirically as a function of radius ratio,r 1/r 2. Forr 1/r 2∼1, (q 2/q 1)win is almost identical with the vorticity ratio (q 2/q 1)dmin which gives the minimum critical merger distance for the particular size ratior 1/r 2. For extremely large size ratio, (q 2/q 1)win〉(q 2/q 1)dmin Partial mergers were seen for a centroid distance which is close to and less than the critical merger distance.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 889–910, doi:10.1175/2010JPO4496.1.
    Description: This paper examines interaction between a barotropic point vortex and a steplike topography with a bay-shaped shelf. The interaction is governed by two mechanisms: propagation of topographic Rossby waves and advection by the forcing vortex. Topographic waves are supported by the potential vorticity (PV) jump across the topography and propagate along the step only in one direction, having higher PV on the right. Near one side boundary of the bay, which is in the wave propagation direction and has a narrow shelf, waves are blocked by the boundary, inducing strong out-of-bay transport in the form of detached crests. The wave–boundary interaction as well as out-of-bay transport is strengthened as the minimum shelf width is decreased. The two control mechanisms are related differently in anticyclone- and cyclone-induced interactions. In anticyclone-induced interactions, the PV front deformations are moved in opposite directions by the point vortex and topographic waves; a topographic cyclone forms out of the balance between the two opposing mechanisms and is advected by the forcing vortex into the deep ocean. In cyclone-induced interactions, the PV front deformations are moved in the same direction by the two mechanisms; a topographic cyclone forms out of the wave–boundary interaction but is confined to the coast. Therefore, anticyclonic vortices are more capable of driving water off the topography. The anticyclone-induced transport is enhanced for smaller vortex–step distance or smaller topography when the vortex advection is relatively strong compared to the wave propagation mechanism.
    Description: Y. Zhang acknowledges the support of theMIT-WHOI Joint Programin Physical Oceanography, NSF OCE-9901654 and OCE-0451086. J. Pedlosky acknowledges the support of NSF OCE- 9901654 and OCE-0451086.
    Keywords: Transport ; Eddies ; Barotropic flow ; Topographic effects ; Vortices ; Currents ; Potential vorticity ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: The topic this summer was "The Dynamics of the Outer Planets." Andrew Ingersoll gave an excellent review of the current understanding of the strcture of the atmospheres of Jupiter, Neptune, Saturn, and Uranus. He presented the flow structures inferred from the information gathered by the Voyager probes and other observations. The models of the circulations of the interior and of the weather layer - the jets and vortices that we see in the images - were discussed. Jun-Ichi Yano gave further discussions on vortex dynamics in the lab, analytical, and numerical models as applied to the outer planets. Finally, Andy returned with a discussion of thin atmospheres (some so thin that they disappear at night) and new approaches to the dynamics of the interiors. These lectures provided a thorough background in both the data and the theory. As usual, we had talks (or what are sometimes called interactive seminars!) from many visitors during the summer, some directly related to the main topic and others covering other new research in geophysical fluid dynamics. From these, the fellows and staff found new aras for collaborative research and new ideas which they may explore after the summer. Finally, the summer was completed with talks from the fellows on their individual research during the summer. These reports reflect the thought and energy that went into learning new topics and formulating new problems. We look forward to seeing fuller versions of these in journal articles. We gratefully acknowledge the support of the National Science Foundation and the Office of Naval Research. The assistance of Jake Peirson and Barbara Ewing-DeRemer, made the summer, once again, pleasant and easy for all.
    Description: Funding was provided by the National Science Foundation under Grant No. OCE8901012.
    Keywords: Geophysical fluid dynamics ; Planetary circulations ; Vortex dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 20046131 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1001-1021, doi:10.1175/jpo3034.1.
    Description: The nonlinear dynamics of baroclinically unstable waves in a time-dependent zonal shear flow is considered in the framework of the two-layer Phillips model on the beta plane. In most cases considered in this study the amplitude of the shear is well below the critical value of the steady shear version of the model. Nevertheless, the time-dependent problem in which the shear oscillates periodically is unstable, and the unstable waves grow to substantial amplitudes, in some cases with strongly nonlinear and turbulent characteristics. For very small values of the shear amplitude in the presence of dissipation an analytical, asymptotic theory predicts a self-sustained wave whose amplitude undergoes a nonlinear oscillation whose period is amplitude dependent. There is a sensitive amplitude dependence of the wave on the frequency of the oscillating shear when the shear amplitude is small. This behavior is also found in a truncated model of the dynamics, and that model is used to examine larger shear amplitudes. When there is a mean value of the shear in addition to the oscillating component, but such that the total shear is still subcritical, the resulting nonlinear states exhibit a rectified horizontal buoyancy flux with a nonzero time average as a result of the instability of the oscillating shear. For higher, still subcritical, values of the shear, a symmetry breaking is detected in which a second cross-stream mode is generated through an instability of the unstable wave although this second mode would by itself be stable on the basic time-dependent current. For shear values that are substantially subcritical but of order of the critical shear, calculations with a full quasigeostrophic numerical model reveal a turbulent flow generated by the instability. If the beta effect is disregarded, the inviscid, linear problem is formally stable. However, calculations show that a small degree of nonlinearity is enough to destabilize the flow, leading to large amplitude vacillations and turbulence. When the most unstable wave is not the longest wave in the system, a cascade up scale to longer waves is observed. Indeed, this classically subcritical flow shows most of the qualitative character of a strongly supercritical flow. This result supports previous suggestions of the important role of background time dependence in maintaining the atmospheric and oceanic synoptic eddy field.
    Description: GRF was supported by NSF Grant OCE-0137023, and JP was supported by NSF Grant OCE- 9901654.
    Keywords: Baroclinic currents ; Shear flows ; Wave instability ; Oscillating shear ; Time dependence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2168–2186, doi:10.1175/JPO-D-11-08.1.
    Description: This paper studies the interaction of an Antarctic Circumpolar Current (ACC)–like wind-driven channel flow with a continental slope and a flat-bottomed bay-shaped shelf near the channel’s southern boundary. Interaction between the model ACC and the topography in the second layer induces local changes of the potential vorticity (PV) flux, which further causes the formation of a first-layer PV front near the base of the topography. Located between the ACC and the first-layer slope, the newly formed PV front is constantly perturbed by the ACC and in turn forces the first-layer slope with its own variability in an intermittent but persistent way. The volume transport of the slope water across the first-layer slope edge is mostly directly driven by eddies and meanders of the new front, and its magnitude is similar to the maximum Ekman transport in the channel. Near the bay’s opening, the effect of the topographic waves, excited by offshore variability, dominates the cross-isobath exchange and induces a mean clockwise shelf circulation. The waves’ propagation is only toward the west and tends to be blocked by the bay’s western boundary in the narrow-shelf region. The ensuing wave–coast interaction amplifies the wave amplitude and the cross-shelf transport. Because the interaction only occurs near the western boundary, the shelf water in the west of the bay is more readily carried offshore than that in the east and the mean shelf circulation is also intensified along the bay’s western boundary.
    Description: Y. Zhang acknowledges the support of the MIT-WHOI Joint Program in Physical Oceanography and NSF OCE-9901654 and OCE- 0451086. J. Pedlosky acknowledges the support of NSF OCE-9901654 and OCE-0451086.
    Keywords: Baroclinic flows ; Eddies ; Fronts ; Mass fluxes/transport ; Mesoscale processes ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L10601, doi:10.1029/2012GL051861.
    Description: A simple barotropic quasi-geostrophic model is used to demonstrate that instabilities radiated from an unstable eastern boundary current can generate zonal striations in the ocean interior with realistic wavelengths and amplitudes. Nonlinear transfer of energy from the more unstable trapped modes is important for radiating modes to overcome friction. The dynamics shown here are generic enough to point to the eastern boundary current as a likely source of the observed striations extending from oceanic eastern boundaries.
    Description: Y-S Fellowship when this study was done, and by NASA grant NNX12AD47G when this paper was prepared. M. Spall is supported by grant OCE-0926656. G. Flierl is supported by grant OCE-0752346.
    Description: 2012-11-16
    Keywords: Rossby waves ; Barotropic instability ; Eastern boundary currents ; Radiating instabilities ; Zonal jets ; Zonal striations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © Authors, 2018. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 76 (2018): 63-91, doi:10.1357/002224018824845929.
    Description: The influence of small islands on zonal geostrophic currents is examined in a two-layer configuration. An analytic solution for steady quasigeostrophic flow is derived under the assumption of no upstream influence and is validated numerically in a time-dependent quasigeostrophic model. Under these conditions solutions are the sum of two eigenmodes, which are either arrested Rossby waves or evanescent depending on background flow conditions (layer speeds, stratification, and latitude). In contrast to homogeneous flows, arrested Rossby waves in two layers can occur even when the depth mean flow is westward and can be generated both to the east and west of the island. A third blocking mode may play a role in general, altering the meridional structure of the zonal flow upstream and downstream of the island. The influence of the quasigeostrophic modes on submesoscale island wake eddies is considered in a two-layer primitive equation model with no-slip boundary conditions at the island. Wake eddy formation is inhibited in the presence of an arrested Rossby wave, though the overall drag is similar.
    Description: This work was supported by the Office of Naval Research Program 322, Physical Oceanography, Grant Number N000141512622.
    Keywords: Islands ; Quasi-geostrophy ; Roosby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...