GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
  • 1
    Online Resource
    Online Resource
    Milton :CRC Press LLC,
    Keywords: United States. ; Electronic books.
    Description / Table of Contents: This book is focused on the critical clinical initiatives introduced by the 21st Century Cure Act passed by the United States Congress in December 2016. The book covers everything from the outline of the initiatives to analysis on the effect on biopharmaceutical research and development.
    Type of Medium: Online Resource
    Pages: 1 online resource (318 pages)
    Edition: 1st ed.
    ISBN: 9781000567991
    Series Statement: Chapman and Hall/CRC Biostatistics Series
    DDC: 615.1072/4
    Language: English
    Note: Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- 1. Introduction -- 2. Complex Innovative Design -- 3. Validation Strategy for Biomarker-Guided Precision/Personalized Medicine -- 4. Model-Informed Drug Development -- 5. Real-World Data and Real-World Evidence -- 6. AI/ML in Medical Research and Drug Development -- 7. Challenges in Cancer Clinical Trials -- 8. Statistical Methods for Assessment of Biosimilars -- 9. Statistical Methods for Assessment of Complex Generic Drugs -- 10. Rare Diseases Drug Development -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Optical and Electronic Materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (298 pages)
    Edition: 1st ed.
    ISBN: 9789811546075
    Series Statement: Springer Series in Optical Sciences Series ; v.231
    Language: English
    Note: Intro -- Preface -- Contents -- About the Authors -- 1 Fundamentals of Ion Beam Technology, Waveguides, and Nanoparticle Systems -- 1.1 Ion Beam Technology Applied for Optical Dielectrics -- 1.1.1 The Ion Beam Facilities -- 1.1.2 The Ion Beam Techniques -- 1.2 Optical Dielectric Waveguides -- 1.3 Optical Properties of Nanoparticle Systems -- 1.4 Techniques for Investigation of Photonic Devices -- 1.4.1 Optical Coupling of Waveguides -- 1.4.2 Microscopic and Spectroscopic Investigations of Waveguides -- References -- 2 Overview of Ion Beam Produced Dielectric Waveguides -- 2.1 Overview of Dielectric Materials for Waveguide Fabrication -- 2.1.1 Glasses -- 2.1.2 Crystals -- 2.1.3 Ceramics -- 2.2 Refractive Index Profiles -- 2.3 Fabrication Techniques and Waveguide Geometries -- 2.4 Basic Waveguiding Properties -- References -- 3 Photonic Structures Based on Thin Films Produced by Ion Beams -- 3.1 Freestanding Crystalline Thin Films by Crystal Ion Slicing -- 3.2 Direct Bonding of Crystalline Membranes on Insulators by LNOI Technology -- 3.3 Micro-/Nano-structuring of LNOI On-Chip Waveguides -- 3.4 LNOI On-Chip Whispering-Gallery Resonators -- 3.5 LNOI On-Chip Photonic Crystal Based Structures -- 3.6 LNOI On-Chip Optical Couplers/Interfaces -- References -- 4 Nanoparticles Synthesized by Ion Implantation -- 4.1 Formation of Elemental Nanoparticles -- 4.1.1 Charge States of Implants in Solids -- 4.1.2 Nucleation, Growth, and Nonmetal-Metal Transition of Metallic Nanoparticles -- 4.1.3 Nucleation Threshold and Control -- 4.1.4 Very Small Non-metallic Metal Nanoparticles as Luminescence Sensitizers -- 4.1.5 Miscellaneous -- 4.2 Semiconductor and Compound Nanoparticles -- 4.2.1 Elemental Semiconductor Nanoparticles -- 4.2.2 Compound Semiconductor Nanoparticles -- 4.3 Oxide Nanoparticles -- 4.4 Amorphous and Liquid Nanoparticles. , 4.4.1 Amorphous Nanoparticles -- 4.4.2 Molten Nanoparticles -- 4.5 Metal Nanoparticles with Two or More Resonances -- 4.6 Magnetic Nanoparticles and Magneto-Optical Effects -- 4.6.1 Superparamagnetic Nanoparticles -- 4.6.2 Magneto-Optical Kerr Effect -- 4.6.3 Curie Transition Modified by the Finite-Size Effect in Magnetic Nanoparticles -- 4.7 Some Phenomena to Be Noted -- 4.7.1 Inter-particle Interaction Between Nanoparticles and Appearance of a New Band -- 4.7.2 High Flux Implantation Effects -- 4.7.3 Laser Co-irradiation Effects on Nanoparticle Formation -- 4.7.4 Single Electron Tunneling to Nanoparticles Embedded in Insulator -- 4.7.5 Cavity Nanoparticles, Sandwiched Nanoparticles, and Nanoplanets -- 4.7.6 Catalysis Nanoparticles -- References -- 5 Shape Elongation of Nanoparticles Induced by Swift Heavy Ion Irradiation -- 5.1 Ion Irradiation Effects on Amorphous Silica -- 5.1.1 Optical Absorption of Point Defects -- 5.1.2 Ion Tracks -- 5.1.3 Compaction -- 5.1.4 Microscopic Origin of Compaction and Core/Shell Ion Tracks -- 5.1.5 Inelastic Thermal Spike Model for the Core/Shell Track Formation and Inconsistency -- 5.1.6 Ion Hammering -- 5.2 Shape Elongation of Nanoparticles -- 5.2.1 Observations of the Shape Elongation of Nanoparticles -- 5.2.2 Minimum Width for the Elongation -- 5.2.3 Particle-in-Vacuum Model -- 5.2.4 Mass Non-conservation of Nano-Rods -- 5.2.5 Initial Nanoparticle Size Dependence on the Elongation -- 5.2.6 Scaling Law for the Elongation -- 5.3 Mechanism of Shape Elongation -- 5.3.1 Inelastic Thermal Spike -- 5.3.2 Two-Temperature Molecular Dynamics -- 5.3.3 Criticisms on Synergy Model Based on Ion Hammering -- 5.4 Optical Properties of Elongated Nanoparticles -- 5.4.1 Optical Linear Dichroism -- 5.4.2 Birefringence -- 5.4.3 Possible Application to UV Polarizer of Nanometric Thickness -- 5.4.4 Second-Harmonic Generation Microscopy. , 5.4.5 Electron Energy Loss Mapping of Elongated Nanoparticles -- 5.5 Some Comments Related to Track Formation -- 5.5.1 Primary Ionization Rate and Velocity Effect Free Theory -- 5.5.2 Self-trapped Exciton Model Versus Exciton Mott Transition and Thermal Spike Heating -- 5.5.3 Recrystallization of Ion Tracks -- 5.6 Elongation by Cluster Irradiation-Toward Lower Energy and More Accessibility -- References -- 6 Electrooptic Properties of Dielectric Waveguides -- 6.1 Modification of Electrooptic Coefficients of Dielectrics -- 6.2 Electrooptic Modulators on Waveguides -- 6.3 Electrooptic Modulators on Membrane -- 6.4 Electrooptic Modulators on LNOI Waveguides -- 6.4.1 EO Phase Modulator Based on Straight Waveguide (Fabry-Perot) Resonator -- 6.4.2 EO Tunable Microring Resonators -- 6.4.3 EO Mach-Zehnder Interferometer Resonators -- 6.4.4 EO Tunable LNOI Bragg Reflectors -- 6.4.5 Compact EO Fourier Transform Spectrometers -- References -- 7 Photoluminescence of Dielectric Waveguides -- 7.1 Up-Conversion of Waveguides -- 7.2 Near Infrared Luminescence in Waveguides -- 7.2.1 Doped LiNbO3 Crystals -- 7.2.2 Doped YAG Crystals -- 7.2.3 Other Crystals -- 7.3 Waveguide Amplifiers -- References -- 8 Nonlinear Optical Dielectric Waveguides -- 8.1 Nonlinear Optical Properties of Waveguides -- 8.2 Nonlinear Frequency Conversion Based on Waveguides -- 8.3 Photorefractive Waveguides -- 8.4 Discrete Solitons in Waveguides and Waveguide Arrays -- References -- 9 Lasing Based on Dielectric Waveguides -- 9.1 Waveguide Lasing at Near Infrared Wavelength Regimes -- 9.2 Pulsed Waveguide Lasers Based on 2D Materials -- 9.3 Self-Frequency Doubled Waveguide Lasing -- References -- 10 Tailoring of Optical Properties by Metallic Nanoparticles -- 10.1 Optical Absorbance Enhancement by Surface Plasmon Resonance -- 10.2 Giant Enhancement of Optical Nonlinearities. , 10.3 Nonlinear Absorption Tuning by Nanoparticles -- 10.4 Pulsed Waveguide Lasers Based on Nanoparticles as Saturable Absorbers -- References -- 11 Summary and Outlook -- 11.1 Summary -- 11.2 Outlook -- 11.2.1 New Materials -- 11.2.2 Novel Devices for Micro-nano Photonics -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Boron isotopes in marine carbonates are increasingly used to reconstruct seawater pH and atmospheric pCO2 through Earth’s history. While isotope ratio measurements from individual laboratories are often of high quality, it is important that records generated in different laboratories can equally be compared. Within this Boron Isotope Intercomparison Project (BIIP), we characterised the boron isotopic composition (commonly expressed in δ11B) of two marine carbonates: Geological Survey of Japan carbonate reference materials JCp‐1 (coral Porites) and JCt‐1 (giant clam Tridacna gigas). Our study has three foci: (i) to assess the extent to which oxidative pre‐treatment, aimed at removing organic material from carbonate, can influence the resulting δ11B; (ii) to determine to what degree the chosen analytical approach may affect the resultant δ11B, and (iii) to provide well‐constrained consensus δ11B values for JCp‐1 and JCt‐1. The resultant robust mean and associated robust standard deviation (s*) for un‐oxidised JCp‐1 is 24.36 ± 0.45‰ (2s*), compared with 24.25 ± 0.22‰ (2s*) for the same oxidised material. For un‐oxidised JCt‐1, respective compositions are 16.39 ± 0.60‰ (2s*; un‐oxidised) and 16.24 ± 0.38‰ (2s*; oxidised). The consistency between laboratories is generally better if carbonate powders were oxidatively cleaned prior to purification and measurement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The boron isotopic ratio of 11B/10B (δ11BSRM951) and trace element composition of marine carbonates are key proxies for understanding carbon cycling (pH) and palaeoceanographic change. However, method validation and comparability of results between laboratories requires carbonate reference materials. Here, we report results of an inter‐laboratory comparison study to both assign δ11BSRM951 and trace element compositions to new synthetic marine carbonate reference materials (RMs), NIST RM 8301 (Coral) and NIST RM 8301 (Foram) and to assess the variance of data among laboratories. Non‐certified reference values and expanded 95% uncertainties for δ11BSRM951 in NIST RM 8301 (Coral) (+24.17‰ ± 0.18‰) and NIST RM 8301 (Foram) (+14.51‰ ± 0.17‰) solutions were assigned by consensus approach using inter‐laboratory data. Differences reported among laboratories were considerably smaller than some previous inter‐laboratory comparisons, yet discrepancies could still lead to large differences in calculated seawater pH. Similarly, variability in reported trace element information among laboratories (e.g., Mg/Ca ± 5% RSD) was often greater than within a single laboratory (e.g., Mg/Ca 〈 2%). Such differences potentially alter proxy‐reconstructed seawater temperature by more than 2 °C. These now well‐characterised solutions are useful reference materials to help the palaeoceanographic community build a comprehensive view of past ocean changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...