GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (113 Seiten) , Illustrationen, Diagramme
    DDC: 570
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (78 Seiten = 7 MB) , Illustration, Graphen, Karte
    Edition: 2022
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lischka, Silke; Stange, Paul; Riebesell, Ulf (2018): Response of Pelagic Calcifiers (Foraminifera, Thecosomata) to Ocean Acidification During Oligotrophic and Simulated Up-Welling Conditions in the Subtropical North Atlantic Off Gran Canaria. Frontiers in Marine Science, 5:379, https://doi.org/10.3389/fmars.2018.00379
    Publication Date: 2023-06-02
    Description: The present investigation was part of a large-scale in situ mesocosm experiment in the oligotrophic waters of the eastern subtropical North Atlantic. Over 62 days, we measured the abundance and vertical flux of pelagic foraminifers and thecosome pteropods as part of a natural plankton community over a range of OA scenarios. A bloom phase was initiated by the introduction of deep-water collected from approx. 650 m depth simulating a natural up-welling event. Foraminifers occurred throughout the entire experiment in both the water column and the sediment traps. Pteropods were present only in small numbers and disappeared after the first two weeks of the experiment.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-06
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; Carbon, organic, particulate; Carbon, total, particulate; DATE/TIME; Day of experiment; Depth, bottom/max; Depth, top/min; Event label; KOSMOS_2014; KOSMOS_2014_Mesocosm-M1; KOSMOS_2014_Mesocosm-M2; KOSMOS_2014_Mesocosm-M3; KOSMOS_2014_Mesocosm-M4; KOSMOS_2014_Mesocosm-M5; KOSMOS_2014_Mesocosm-M6; KOSMOS_2014_Mesocosm-M7; KOSMOS_2014_Mesocosm-M8; KOSMOS_2014_Mesocosm-M9; MESO; Mesocosm experiment; Mesocosm label; Subtropical North Atlantic; Treatment: partial pressure of carbon dioxide
    Type: Dataset
    Format: text/tab-separated-values, 1832 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-06
    Description: As one of Earth's most productive marine ecosystems, the Peruvian Upwelling System transports large amounts of biogenic matter from the surface to the deep ocean. Whilst particle sinking velocity is a key factor controlling the biological pump, thereby affecting carbon sequestration and oxygen-depletion, it has not yet been measured in this system. During a 50-day mesocosm experiment in the surface waters off the coast of Peru, we regularly sampled sedimented material (sampling depth: 17 m) and analyzed the properties of sinking particles using an optical measurement approach. The presented dataset includes sinking velocity, particle size (ESD), compactness (porosity) and shape (aspect ratio) of 〉100.000 individually measured particles.
    Keywords: Aspect ratio; Climate - Biogeochemistry Interactions in the Tropical Ocean; DATE/TIME; Day of experiment; DEPTH, water; Equivalent spherical diameter; Experimental treatment; export flux; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Particle porosity; Peruvian Upwelling System; Phytoplankton; Sample code/label; SFB754; sinking velocity; Sinking velocity
    Type: Dataset
    Format: text/tab-separated-values, 821688 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-06
    Description: As one of Earth's most productive marine ecosystems, the Peruvian Upwelling System transports large amounts of biogenic matter from the surface to the deep ocean. Whilst particle sinking velocity is a key factor controlling the biological pump, thereby affecting carbon sequestration and oxygen-depletion, it has not yet been measured in this system. During a 50-day mesocosm experiment in the surface waters off the coast of Peru, we regularly measured particle sinking velocities and their biogeochemical and physical drivers. We further characterized the general properties of sinking matter (sampling depth: 17 m) under different phytoplankton communities and nutritional states. This dataset contains mean velocities of sinking particles as well as their median size, compactness and shape. We further included the particulate organic carbon flux, the sinking matter nitrogen to phosphorus ratio and the relative contribution of opal and particulate inorganic carbon to the total flux. The particle flux characteristics are complemented by measurements of chlorophyll a concentration in the water column and the relative contribution of diatoms to total chlorophyll a.
    Keywords: Aspect ratio; Biogenic silica; Carbon, inorganic, particulate; Carbon, organic, particulate, flux per day; Chlorophyll a; Chlorophyll a, Diatoms; Climate - Biogeochemistry Interactions in the Tropical Ocean; DATE/TIME; Day of experiment; Depth, bottom/max; Depth, top/min; DEPTH, water; Equivalent spherical diameter; Experimental treatment; export flux; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; MESO; mesocosm experiment; Mesocosm experiment; Mesocosm label; Nitrogen/Phosphorus ratio; Particle porosity; Peruvian Upwelling System; Phytoplankton; Sediment trap; SFB754; sinking velocity; Sinking velocity
    Type: Dataset
    Format: text/tab-separated-values, 3317 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-26
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of experiment; DEPTH, water, experiment; Event label; Globigerinidae; Heteropoda; Identification; KOSMOS_2014; KOSMOS_2014_Atlantic-Reference; KOSMOS_2014_Mesocosm-M1; KOSMOS_2014_Mesocosm-M2; KOSMOS_2014_Mesocosm-M3; KOSMOS_2014_Mesocosm-M4; KOSMOS_2014_Mesocosm-M5; KOSMOS_2014_Mesocosm-M6; KOSMOS_2014_Mesocosm-M7; KOSMOS_2014_Mesocosm-M8; KOSMOS_2014_Mesocosm-M9; MESO; Mesocosm experiment; Mesocosm label; Orbulina universa, sexual stage; Pteropoda; Subtropical North Atlantic; Time in days; Treatment: partial pressure of carbon dioxide
    Type: Dataset
    Format: text/tab-separated-values, 1130 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-26
    Keywords: BIOACID; Biological Impacts of Ocean Acidification; DATE/TIME; Day of experiment; Depth, bottom/max; Depth, top/min; Event label; Globigerinidae; Heteropoda; Identification; KOSMOS_2014; KOSMOS_2014_Mesocosm-M1; KOSMOS_2014_Mesocosm-M2; KOSMOS_2014_Mesocosm-M3; KOSMOS_2014_Mesocosm-M4; KOSMOS_2014_Mesocosm-M5; KOSMOS_2014_Mesocosm-M6; KOSMOS_2014_Mesocosm-M7; KOSMOS_2014_Mesocosm-M8; KOSMOS_2014_Mesocosm-M9; MESO; Mesocosm experiment; Mesocosm label; Orbulina universa, sexual stage; Pteropoda; Subtropical North Atlantic; Time in days; Treatment: partial pressure of carbon dioxide
    Type: Dataset
    Format: text/tab-separated-values, 3853 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-22
    Description: The oceans' uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m**3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978-2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Ammonium; Aragonite saturation state; Aragonite saturation state, standard deviation; Bicarbonate ion; Bicarbonate ion, standard deviation; Biogenic silica; Biomass/Abundance/Elemental composition; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbon, organic, particulate/Phosphorus, particulate ratio; Carbon, total, particulate; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyceae indeterminata, biomass as carbon; Chlorophyll a; Chlorophyll a, standard deviation; Chrysophyceae indeterminata, biomass as carbon; Coast and continental shelf; Community composition and diversity; Cryptophyceae indeterminata, biomass as carbon; Cyanophyceae, biomass as carbon; DATE/TIME; Day of experiment; Diatoms indeterminata, biomass as carbon; Dinophyceae indeterminata, biomass as carbon; Entire community; Event label; Field experiment; Fjord; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; KOSMOS_2015; KOSMOS_2015_Mesocosm-M1; KOSMOS_2015_Mesocosm-M2; KOSMOS_2015_Mesocosm-M3; KOSMOS_2015_Mesocosm-M4; KOSMOS_2015_Mesocosm-M5; KOSMOS_2015_Mesocosm-M6; KOSMOS_2015_Mesocosm-M7; KOSMOS_2015_Mesocosm-M8; KOSMOS_2015_Mesocosm-M9; KOSMOS Bergen; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; Nitrate; Nitrate and Nitrite; Nitrite; Nitrogen, organic, particulate; Nitrogen, organic, particulate/Phosphorus, organic, particulate ratio; Nitrogen, total, particulate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Pelagos; pH; pH, standard deviation; Phosphate; Phosphate, total, particulate; Potentiometric titration; Prasinophyceae indeterminata, biomass as carbon; Primary production/Photosynthesis; Prymnesiophyceae indeterminata, biomass as carbon; Ratio; Salinity; Salinity, standard deviation; Silicate; Temperate; Temperature, water; Temperature, water, standard deviation; Type
    Type: Dataset
    Format: text/tab-separated-values, 18566 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-03-15
    Description: Planktonic Foraminifera and thecosome pteropods are major producers of calcite and aragonite in the ocean and play an important role for pelagic carbonate flux. The responses of planktonic foraminifers to ocean acidification (OA) are variable among the species tested and so far do not allow for reliable conclusion. Thecosome pteropods respond with reduced calcification and shell dissolution to OA and are considered at high risk especially at high latitudes. The present investigation was part of a large-scale in situ mesocosm experiment in the oligotrophic waters of the eastern subtropical North Atlantic. Over 62 days, we measured the abundance and vertical flux of pelagic foraminifers and thecosome pteropods as part of a natural plankton community over a range of OA scenarios. A bloom phase was initiated by the introduction of deep-water collected from approx. 650 m depth simulating a natural up-welling event. Foraminifers occurred throughout the entire experiment in both the water column and the sediment traps. Pteropods were present only in small numbers and disappeared after the first two weeks of the experiment. No significant CO2 related effects were observed for foraminifers, but cumulative sedimentary flux was reduced at the highest CO2 concentrations. This flux reduction was most likely accompanying an observed flux reduction of particulate organic matter (POM) so that less foraminifers were intercepted and transported downward.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; DATE/TIME; Day of experiment; Depth, bottom/max; Depth, top/min; DEPTH, water, experiment; Entire community; Event label; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Globigerinidae; Heteropoda; Identification; KOSMOS_2014; KOSMOS_2014_Atlantic-Reference; KOSMOS_2014_Mesocosm-M1; KOSMOS_2014_Mesocosm-M2; KOSMOS_2014_Mesocosm-M3; KOSMOS_2014_Mesocosm-M4; KOSMOS_2014_Mesocosm-M5; KOSMOS_2014_Mesocosm-M6; KOSMOS_2014_Mesocosm-M7; KOSMOS_2014_Mesocosm-M8; KOSMOS_2014_Mesocosm-M9; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Orbulina universa, sexual stage; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Pteropoda; Salinity; Subtropical North Atlantic; Temperate; Temperature, water; Time in days; Treatment: partial pressure of carbon dioxide; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 10390 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...