GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2024-02-07
    Description: Regional anomalies of steric sea level are either due to redistribution of heat and freshwater anomalies or due to ocean-atmosphere buoyancy fluxes. Interannual to decadal variability in sea level across the tropical Pacific is mainly due to steric variations driven by wind stress anomalies. The importance of air--sea buoyancy fluxes is less clear. We use a global, eddy permitting ocean model and a series of sensitivity experiments with quasi-climatological momentum and buoyancy fluxes to identify the contribution of buoyancy fluxes for interannual to decadal sea level variability in the tropical Pacific. We find their contribution on interannual timescales to be strongest in the central tropical Pacific at around 10° latitude in both hemispheres and also relevant in the very east of the tropical domain. Buoyancy flux forced anomalies are in phase with variations driven by wind stress changes but their effect on the prevailing anomalies and the importance of heat and fresh water fluxes vary locally. In the eastern tropical basin interannual sea level variability is amplified by anomalous heat fluxes, while the importance of fresh water fluxes is small and neither has any impact on decadal timescales. In the western tropical Pacific the variability on interannual and decadal timescales is dampened by both, heat and freshwater fluxes. The mechanism involves westward propagating Rossby waves that are triggered during ENSO events by anomalous buoyancy fluxes in the central tropical Pacific and counteract the prevailing sea level anomalies once they reach the western part of the basin.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-07
    Description: Marine heatwaves along the coast ofWestern Australia, referred to as Ningaloo Niño, have had dramatic impacts on the ecosystem in the recent decade. A number of local and remote forcing mechanisms have been put forward, however little is known about the depth structure of such temperature extremes. Utilizing an eddy-active global Ocean General Circulation Model, Ningaloo Niño and the corresponding cold Ningaloo Niña events are investigated between 1958-2016, with focus on their depth structure. The relative roles of buoyancy and wind forcing are inferred from sensitivity experiments. Composites reveal a strong symmetry between cold and warm events in their vertical structure and associated large-scale spatial patterns. Temperature anomalies are largest at the surface, where buoyancy forcing is dominant and extend down to 300m depth (or deeper), with wind forcing being the main driver. Large-scale subsurface anomalies arise from a vertical modulation of the thermocline, extending from the western Pacific into the tropical eastern Indian Ocean. The strongest Ningaloo Niños in 2000 and 2011 are unprecedented compound events, where long-lasting high temperatures are accompanied by extreme freshening, which emerges in association with La Niñas, more common and persistent during the negative phase of the Interdecadal Pacific Oscillation. It is shown that Ningaloo Niños during La Nina phases have a distinctively deeper reach and are associated with a strengthening of the Leeuwin Current, while events during El Niño are limited to the surface layer temperatures, likely driven by local atmosphere-ocean feedbacks, without a clear imprint on salinity and velocity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-02-07
    Description: Enhanced Southern Ocean ventilation in recent decades has been suggested to be a relevant modulator of the observed changes in ocean heat and carbon uptake. This study focuses on the Southern Ocean midlatitude ventilation changes from the 1960s to the 2010s. A global 1/4° configuration of the NEMO–Louvain-la-Neuve sea ice model, version 2 (LIM2), including the inert tracer CFC-12 (a proxy of ocean ventilation) is forced with the CORE, phase II (CORE-II), and JRA-55 driving ocean (JRA55-do) atmospheric reanalyses. Sensitivity experiments, where the variability of wind stress and/or the buoyancy forcing is suppressed on interannual time scales, are used to unravel the mechanisms driving ventilation changes. Ventilation changes are estimated by comparing CFC-12 interior inventories among the different experiments. All simulations suggest a multidecadal fluctuation of Southern Ocean ventilation, with a decrease until the 1980s–90s and a subsequent increase. This evolution is related to the atmospheric forcing and is caused by the (often counteracting) effects of wind stress and buoyancy forcing. Until the 1980s, increased buoyancy gains caused the ventilation decrease, whereas the subsequent ventilation increase was driven by strengthened wind stress causing deeper mixed layers and a stronger meridional overturning circulation. Wind stress emerges as the main driver of ventilation changes, even though buoyancy forcing modulates its trend and decadal variability. The three Southern Ocean basins take up CFC-12 in distinct density intervals but overall respond similarly to the atmospheric forcing. This study suggests that Southern Ocean ventilation is expected to increase as long as the effect of increasing Southern Hemisphere wind stress overwhelms that of increased stratification.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-07
    Description: Changes in the Atlantic Meridional Overturning Circulation (AMOC) represent a crucial component of Northern Hemisphere climate variability. In modelling studies decadal overturning variability has been attributed to the intensity of deep winter convection in the Labrador Sea. This linkage is challenged by transport observations at sections across the subpolar gyre. Here we report simulations with an eddy-rich ocean model which captures the observed concentration of downwelling in the northeastern Atlantic and the negligible impact of interannual variations in Labrador Sea convection during the last decade. However, the exceptionally cold winters in the Labrador Sea during the first half of the 1990s induced a positive AMOC anomaly of more than 20%, mainly by augmenting the downwelling in the northeastern North Atlantic. The remote effect of excessive Labrador Sea buoyancy forcing is related to rapid spreading of mid-depth density anomalies into the Irminger Sea and their entrainment into the deep boundary current off Greenland.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...