GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Botany. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (144 pages)
    Edition: 1st ed.
    ISBN: 9789811602047
    DDC: 632.19
    Language: English
    Note: Intro -- Foreword -- Preface -- Acknowledgements -- Contents -- About the Authors -- Abbreviations -- 1: Introduction -- 1.1 General Introduction -- 1.2 Importance of Technologies in Climate Change Research on Agriculture -- 1.3 Summary -- References -- 2: Carbon Dioxide -- 2.1 Measurements of Carbon dioxide (CO2) in the Atmosphere, Soil and Agricultural Crops -- 2.1.1 Infrared Gas Analysis -- 2.1.2 Eddy Covariance Technique -- Components of Eddy Covariance System -- Major Components Used in Eddy Covariance Technique -- Sonic Anemometer -- Data Storage -- Power Supply -- Flux Calculations -- Measurements Using Eddy Covariance Flux Towers -- Limitations -- 2.1.3 Gas Chromatography -- 2.1.4 Spectroscopic Methods -- 2.1.5 Carbon Stock Measurement Technique -- 2.1.6 Wet Digestion -- 2.1.7 Dry Combustion -- 2.1.8 Dry Combustion in an Elemental Analyser -- 2.1.9 Fractionation of Soil Organic Carbon -- 2.1.10 Physical Fractions -- 2.1.11 Chemical Fractionation -- 2.1.12 Spectroscopic Method -- 2.1.13 Laser-Induced Breakdown Spectroscopy (LIBS) -- 2.1.14 Inelastic Neutron Scattering (INS) -- 2.1.15 CO2 Emission Measurement from Soil: Quantitative Approach -- Alkali Trap Method -- Soil Respirator Method -- Infrared Gas Analysis Method -- Closed-Chamber Method -- 2.1.16 Space-Borne Measurements -- 2.2 Technologies Associated with CO2 Enrichment Studies (Crop Response Studies) -- 2.2.1 Leaf Cuvettes -- 2.2.2 Sunlit-Controlled Environment Chambers -- 2.2.3 Soil Plant Atmosphere Research (SPAR) System -- 2.2.4 Portable Field Chamber -- 2.2.5 Open-Top Chamber -- 2.2.6 Screen-Aided CO2 Control (SACC) -- 2.2.7 Free Air CO2 Enrichment Technology (FACE) -- 2.3 Modelling Techniques -- 2.4 Mitigation Technologies -- 2.4.1 Carbon Sequestration -- Land-Based Enhanced Rock Weathering Method of Carbon Sequestration: -- 2.4.2 Zero-Tillage -- 2.4.3 Agroforestry. , 2.4.4 Crop Residue Management -- 2.4.5 Biofuels -- 2.4.6 Biochar -- 2.4.7 Mycorrhiza -- 2.4.8 Microalgae -- 2.4.9 Organic Agriculture -- 2.5 Summary -- References -- 3: Methane -- 3.1 Technologies Associated with Methane (CH4) Emission and Crop Response Studies -- 3.1.1 Measurements of Methane Emission in Stationary Mode -- 3.1.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.1.3 Non-micrometeorological Techniques -- Chamber Techniques: -- Calculation of Methane Flux -- Enteric Tracer Ratio -- External Tracer Ratio -- Mass Balance from Barns -- 3.1.4 Micrometeorological Techniques -- Mass Balance -- Integrated Horizontal Flux (IHF) -- Modified Mass Difference (MMD) Approach -- Vertical Flux Techniques -- Eddy Covariance (EC) -- 3.2 Modelling Techniques -- 3.3 Mitigation Technologies -- 3.3.1 Potassium Amendment -- 3.3.2 Midseason Drainage -- 3.3.3 Alternate Wetting and Drying (AWD) Technology -- 3.3.4 Nitrogen Fertilizer on Methane Emissions -- 3.3.5 Biocovers of Landfills -- 3.3.6 Biological Aspect of the Amendment of Methanogenic Activity -- 3.3.7 Breeding Rice Cultivars for Reduced Methane Emissions -- 3.4 Summary -- References -- 4: Nitrous Oxide -- 4.1 Methods for Measurement of Nitrous Oxide (N2O) in Atmosphere and Soil -- 4.1.1 Soil Surface Gas Flux Measurement Methods -- Advantages of Closed-Chamber Method -- Precautions -- Limitations -- Points to Minimize the Uncertainties -- 4.1.2 Micrometeorological Technique -- Calculation of N2O Flux -- 4.2 Modelling Techniques -- 4.3 Mitigation Technologies -- 4.3.1 Fertilizer Management Technology -- 4.3.2 Slow Release of Fertilizer Application and Manipulation Technologies -- 4.3.3 Water Management Technology for Mitigation of N2O Emission -- 4.4 Summary -- References -- 5: Ozone -- 5.1 Methods for Studying the Effect of Ozone (O3) on Agricultural Crops -- 5.1.1 Ozone-Generating Technologies. , 5.2 Modelling Techniques -- 5.3 Mitigation Technologies -- 5.4 Summary -- References -- 6: Temperature -- 6.1 Methods for Measurement of Temperature in Crops, Soil and Atmosphere -- 6.2 Temperature Enrichment Technologies for Crop Response Studies -- 6.2.1 Temperature Gradient Chambers -- 6.2.2 Temperature Gradient Greenhouses (TGG) -- 6.2.3 SPAR System (Soil Plant Atmosphere Research System) -- 6.2.4 Infrared (IR) Warming Technology -- 6.2.5 Free Air Temperature Enrichment Technology (FATE) -- 6.2.6 Soil Warming System -- 6.3 Modelling Techniques -- 6.4 Mitigation Technologies -- 6.5 Summary -- References -- 7: The Plant Water Status -- 7.1 Methods for Measurement of Water Status in Plants and Soils -- 7.1.1 Dynamic Water Movement -- 7.2 Method to Determine Climate Change Effect on Crop Water Productivity -- 7.3 Method to Estimate Climate Change Impact on Soil Water Balance -- 7.4 Mitigation Technologies for Water Stress -- 7.5 Summary -- References -- 8: Summary -- Glossary.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Atmosphere. ; Air-Pollution potential. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (434 pages)
    Edition: 1st ed.
    ISBN: 9789811677274
    Series Statement: Disaster Resilience and Green Growth Series
    DDC: 551.55
    Language: English
    Note: Intro -- Foreword -- Preface -- Acknowledgement -- Contents -- About the Editors -- Abbreviations -- 1: An Introduction to Extremes in Atmospheric Processes and Phenomena: Assessment, Impacts and Mitigation -- 1.1 General Introduction -- 1.2 Summary of Chapters -- 1.3 Conclusions -- References -- 2: Atmospheric Phenomena: Origin, Mechanism, and Impacts -- 2.1 Introduction -- 2.2 Atmospheric Phenomena and Mechanism -- 2.2.1 Hydrometeor -- 2.2.1.1 Suspended Particle -- 2.2.1.2 Precipitation -- 2.2.1.3 Spout -- 2.2.2 Lithometeor -- 2.2.2.1 Haze -- 2.2.2.2 Blowing Dust -- 2.3 Impacts of Hydrometeors and Lithometeors on Human Society -- 2.4 Conclusion -- References -- 3: Air Pollution and Its Associated Impacts on Atmosphere and Biota Health -- 3.1 Introduction -- 3.2 Air Pollutants: Types and Sources -- 3.3 Air Pollution and Its Impacts on the Atmosphere -- 3.3.1 Greenhouse Effect and Global Warming -- 3.3.2 Stratospheric Ozone Depletion -- 3.3.3 Atmospheric Deposition and Acid Rain -- 3.3.4 Suppression of Rainfall -- 3.3.5 Visibility Reduction -- 3.4 Impacts on Biota Health -- 3.4.1 Sulphur Dioxide (SO2) -- 3.4.2 Oxides of Nitrogen -- 3.4.3 Ground Level Ozone -- 3.4.4 Suspended Particulate Matter -- 3.4.5 Fluorides -- 3.4.6 Peroxyacyl Nitrates -- 3.5 Impacts of Air Pollutants on Human Health -- 3.6 Conclusions -- References -- 4: South Asian Monsoon Extremes and Climate Change -- 4.1 Introduction -- 4.2 Semi-permanent Features of Monsoon -- 4.2.1 Heat Low -- 4.2.2 Monsoon Trough -- 4.2.3 Tibetan Anticyclone -- 4.2.4 Tropical Easterly Jet (TEJ) -- 4.2.5 Mascarene High (MH) -- 4.2.6 Somali Low-Level Jet (LLJ) -- 4.3 Phases of Monsoon -- 4.3.1 Onset of Monsoon -- 4.3.2 Monsoon Advance -- 4.3.3 Withdrawal of SW Monsoon -- 4.4 Intra-seasonal Variations/Active and Break Spells -- 4.5 Extremities in South Asian Monsoon -- 4.6 Regional Trends in Monsoon. , 4.7 ENSO, IOD and MJO Links with Monsoon -- 4.8 Climate Change and Global Warming Impacts -- 4.8.1 Remedial Measures -- 4.8.2 Impact of South Asia Monsoon on Society -- 4.9 Summary -- References -- 5: Contribution of Fog in Changing Air Quality: Extremities and Risks to Environment and Society -- 5.1 Introduction -- 5.2 Fog -- 5.3 Types of Fog -- 5.3.1 Fog Formed Through the Addition of Water Vapour -- 5.3.1.1 Steam Fog -- 5.3.1.2 Frontal Fog -- 5.3.2 Fog Formed by Cooling -- 5.3.2.1 Radiation Fog -- Advection-Radiation Fog -- High Inversion Fog -- 5.3.2.2 Advection Fog -- 5.3.2.3 Upslope Fog -- 5.3.2.4 Mixing Fog -- 5.4 World Distribution of Fog -- 5.4.1 Northern India Fog -- 5.5 Characterization of Fog -- 5.5.1 Microphysical Structure of Fog -- 5.5.2 Haze to Fog Transition -- 5.5.3 Chemical Composition of Fog -- 5.6 Factor for Fog Formation -- 5.6.1 Meteorological Condition -- 5.6.2 Role of Aerosol -- 5.7 Fog as an Extreme Event: Causes and Impacts -- 5.7.1 Fog as an Extreme Event -- 5.7.2 Causes -- 5.7.3 Impacts -- 5.7.4 Effect on Air Quality -- 5.7.4.1 Effect on Pollutant Concentration -- 5.7.4.2 Visibility -- 5.7.5 Effect on Transport System -- 5.7.5.1 Traffic Accidents -- 5.7.6 Economic Impact -- 5.7.7 Health Effect -- 5.7.7.1 Fog and Chest Infection -- 5.7.8 Wireless Communication -- 5.7.9 Impact on Vegetation -- 5.8 Conclusion -- References -- 6: Nature of Sand and Dust Storm in South Asian Region: Extremities and Environmental Impacts -- 6.1 Introduction -- 6.1.1 Dust Storms: a Global Phenomenon and a Transboundary Hazard -- 6.1.2 How SDS Act as Extreme Event? -- 6.2 Sand and Dust Storm Processes -- 6.3 Drivers of Sand and Dust Storm -- 6.3.1 Natural Drivers -- 6.3.2 Anthropogenic Drivers -- 6.4 State and Trends of SDS -- 6.5 Geography of Dust Storms in South Asia -- 6.5.1 India -- 6.5.2 Pakistan -- 6.5.3 Afghanistan. , 6.6 SDS Hazards and Their Impacts -- 6.6.1 Impacts on Ocean and Its Productivity -- 6.6.2 Impact of SDS on Air Quality -- 6.6.3 Human Health Impacts -- 6.6.3.1 Cardio-respiratory Diseases -- 6.6.3.2 Valley Fever -- 6.6.3.3 Eye and Skin Infections -- 6.6.4 Economic Impacts -- 6.7 Climate Change and SDS Events -- 6.7.1 Positive and Negative Forcing and SDS -- 6.7.2 Connection Between SDS and Climate Change -- 6.8 Conclusion -- References -- 7: Assessment of Heat and Cold Waves Phenomena and Impacts on Environment -- 7.1 Introduction -- 7.2 Heat Waves -- 7.2.1 Defining Heat Waves -- 7.2.2 Generation of Heat Waves -- 7.2.2.1 Atmospheric Characteristics -- 7.2.3 Climate Change and Heat Waves -- 7.2.4 Urban-Scale Aspects of Heat Waves -- 7.2.4.1 Heat Waves and Urban Heat Island Effect -- 7.2.4.2 Heat Waves and Air Quality -- 7.2.5 Impacts of Heat Waves and Mitigation Strategies -- 7.2.5.1 Human Health -- 7.2.5.2 Energy Sector and Infrastructure -- 7.2.5.3 Other Aspects -- 7.2.5.4 Mitigation Strategies -- 7.3 Cold Waves -- 7.4 Case Study of Heat Wave -- 7.5 Conclusions -- References -- 8: Intense Biomass Burning Over Northern India and Its Impact on Air Quality, Chemistry and Climate -- 8.1 Introduction -- 8.2 Major Sources of Intense Biomass Burning in Northern India -- 8.3 Extreme Biomass Burning -- 8.4 Biomass Burning-Induced Elevated Levels of Aerosols and Trace Gases -- 8.4.1 Particulate Matter (PM) -- 8.4.2 Carbonaceous Aerosols -- 8.4.3 Ozone -- 8.4.4 Ozone Precursors -- 8.5 Impacts of Intense Biomass Burning -- 8.5.1 Air Quality -- 8.5.2 Chemistry -- 8.5.3 Climate and Weather -- 8.5.3.1 Impact on Aerosol Characteristics and Radiative Forcing -- 8.5.3.2 Impact over Himalayan Region -- 8.6 Summary -- References -- 9: Rising Extreme Event of Smog in Northern India: Problems and Challenges -- 9.1 Introduction -- 9.2 North-India´s Crowning Glory or Not?. , 9.3 Smog Events over Northern India -- 9.4 Challenges: Problems and Allied Impacts -- 9.4.1 Industrial and Vehicular Emissions -- 9.4.2 Crop Residue Burning -- 9.4.3 Natural Processes -- 9.4.4 Road Dust, Construction, and Demolition -- 9.4.5 Lack of Source Identification Studies -- 9.4.6 Inefficient Waste Management -- 9.4.7 Impacts -- 9.4.7.1 Health Impacts -- 9.4.8 Visibility Reduction -- 9.4.9 Economic Losses -- 9.4.10 Agricultural Loss -- 9.5 Conclusion -- References -- 10: Volcanic Emissions: Causes, Impacts, and Its Extremities -- 10.1 Introduction -- 10.1.1 Types of Volcanoes -- 10.1.1.1 On the Basis of Activity -- 10.1.1.2 On the Basis of Structure -- 10.2 Causes of Volcanic Emissions -- 10.2.1 Plate Tectonics -- 10.2.1.1 Crustal Plates -- 10.2.1.2 Plate Boundaries -- 10.3 Emissions from Volcanoes -- 10.3.1 Volcanic Material -- 10.4 Impacts of Volcanic Emissions -- 10.4.1 Radiative Forcing -- 10.4.2 Impact on Ozone -- 10.4.3 Acid Rain -- 10.4.4 Impact on Aviation -- 10.4.5 Environment and Health -- 10.4.6 Volcano and ENSO Relation -- 10.5 Impacts and Extremities -- 10.5.1 Mount Pinatubo: A Case Study -- 10.6 Summary -- References -- 11: Assessment of Extreme Firework Episode in a Coastal City of Southern India: Kannur as a Case Study -- 11.1 Introduction -- 11.2 Description of Monitoring Site -- 11.3 Results and Discussion -- 11.3.1 Variation of Surface O3 -- 11.3.2 Variation of Oxides of Nitrogen -- 11.3.3 Variation of CO and SO2 -- 11.3.4 Diurnal Variation of BTEX and NH3 -- 11.3.5 Variation of PM10 and PM2.5 -- 11.3.6 Variation of Metal Concentrations Associated with Particulate Matters -- 11.4 Conclusion -- References -- 12: Air Pollution Episodes: Brief History, Mechanisms and Outlook -- 12.1 Introduction -- 12.2 Global Distribution of Air Pollution -- 12.3 Major Historical Episodes and Impacts -- 12.4 Important Mechanisms and Challenges. , 12.5 Some Perspectives on Control Measures and Outlook -- 12.6 Summary -- References -- 13: Increasing Atmospheric Extreme Events and Role of Disaster Risk Management: Dimensions and Approaches -- 13.1 Background -- 13.2 Atmospheric Dynamics and Feedbacks -- 13.3 Increase in Frequency and Intensity of Atmospheric Extremes -- 13.3.1 Large-Scale Atmospheric Extremes -- 13.3.1.1 Heat and Cold Waves -- 13.3.1.2 Precipitation Modification -- 13.3.1.3 Droughts -- 13.3.1.4 Dust Storms -- 13.3.1.5 Forest Fires and Biomass Burning -- 13.3.2 Regional and Local-Scale Atmospheric Extremes -- 13.3.2.1 Urban Heat Island and CO2 Domes -- 13.3.2.2 Extreme Precipitation Events and Urban Flooding -- 13.3.2.3 Crop Residue Burning and Smog -- 13.4 Vulnerability to Disaster -- 13.5 Disaster Risk Management -- 13.5.1 Scientific Dimensions and Decision Support Systems -- 13.5.2 Disaster Risk Reduction, Mitigation and Adaptation -- 13.5.3 Early Warning Systems and Post-disaster Management -- 13.6 Summary -- References -- 14: Disaster Preparedness and Emergency Response for Air Pollution and Related Health Extremes -- 14.1 Introduction -- 14.2 Air Pollution Risks and Episodes -- 14.3 Air Pollution as Disaster and Its Preparedness -- 14.4 Air Pollution Emergency Causes -- 14.4.1 Dense Fog and Smog -- 14.4.2 Chemical/Industrial Accidents -- 14.4.3 Dust and Sand Storms -- 14.4.4 Urban Air Pollution -- 14.4.5 Biomass Burning -- 14.4.6 Forest Fire -- 14.5 Air Pollution as Public Health Emergency -- 14.6 Existing Policies and Recommendations -- 14.7 Integrated Approach to Deal with Air Pollution as Disaster -- 14.8 Conclusion -- References -- 15: Cost-Effective Technologies for Control of Air Pollution and Atmospheric-Related Extremes -- 15.1 Introduction -- 15.2 Air Pollution Management -- 15.2.1 Step 1: Emissions Definition -- 15.2.2 Step 2: Define the Target Groups. , 15.2.3 Step 3: Determination of Acceptable Exposure Levels.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Greenhouse gas mitigation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (265 pages)
    Edition: 1st ed.
    ISBN: 9789811644825
    DDC: 363.73874
    Language: English
    Note: Intro -- Foreword -- Acknowledgements -- About the Book -- Contents -- About the Editors -- Acronyms -- 1: Introduction to Greenhouse Gases: Sources, Sinks and Mitigation -- 1 General Introduction -- 2 Summary of Chapters -- References -- 2: Source Apportionment of Greenhouse Gases in the Atmosphere -- 1 Introduction -- 2 Greenhouse Effect: Global Warming and Climate Change -- 3 Major GHGs in the Atmosphere -- 3.1 Carbon Dioxide (CO2) -- 3.2 Methane (CH4) -- 3.3 Nitrous Oxide (N2O) -- 3.4 Fluorinated Gases (HFCS, PFCS, SF6) -- 4 Important Factors of Green House Gas Emission -- 4.1 Increasing Energy Demand -- 4.2 GDP vs Emissions -- 4.3 Urbanization -- 4.4 Growing Vehicle Use -- 4.5 Industry -- 5 Greenhouse Gases Budget of Different Countries and Their Contribution -- 6 Source Apportionment of GHGs in the Atmosphere -- 6.1 Source Identification -- 6.2 Identification of Key Source Categories for Inventory Work -- 6.3 Data Collection: Activity Data and Facility Data -- 6.4 Quality Assurance and Quality Control -- 6.5 Development of ``Emission Factor´´ (EF) for Different Source Categories -- 6.6 Estimation of GHG Emission Levels -- 7 Conclusion -- References -- 3: Identification of Major Sinks of Greenhouse Gases -- 1 Introduction -- 2 Major Sinks for GHGs: Global Scenario and Significance -- 3 Sinks for Carbon Dioxide -- 3.1 Oceans as Sink for CO2 -- 3.2 Terrestrial Biosphere as Sink for CO2 -- 3.3 Forests as Sinks for CO2 -- 3.4 Boreal Landscape as Sink for Carbon -- 3.5 Challenges with Terrestrial Sinks -- 4 Sinks for Methane -- 4.1 Wetlands as Sink of Methane and Other GHGs -- 5 Sinks for Oxides of Nitrogen -- 6 Sinks of Halogen-Containing Gases -- 7 Artificial Removal of the Greenhouse Gases -- 8 Future Challenges -- 9 Recommendations -- Box 3.1 FAQs -- Box 3.2 Ocean Fertilization -- Box 3.3 Biochar. , Box 3.4 Bioenergy with Carbon Capture and Storage (BECCS) -- References -- 4: Greenhouse Gas Emission Flux from Forest Ecosystem -- 1 Introduction -- 1.1 Main GHGs -- 1.2 Source-Sink Aspect of Flux from Forest -- 1.3 National/International Bodies Involved in GHG Emissions Regulation -- 2 Emission of Greenhouse Gases and Global Warming -- 3 GHGs Emission from Forest and Global Flux Estimates/Contribution (Table 4.1) -- 4 GHG Flux Measurement Techniques (Fig.4.1) -- 4.1 Eddy Covariance Flux Tower -- 4.2 Chamber Systems -- 4.2.1 Closed Chambers -- 4.2.2 Open-chambers -- 4.3 Space-Borne Measurements -- 4.4 Air-Borne Measurements -- 4.5 Soil Emissions Modelling -- 4.6 Environmental Measurements -- 4.6.1 Infrared Techniques -- 5 Factors Governing GHG Production and Emission from Forests Ecosystem -- 5.1 Land-Use and Land Cover Changes -- 5.2 Substrate Availability -- 5.3 Temperature -- 5.4 Precipitation and Soil Water -- 5.5 Soil pH-Values -- 5.6 Nitrogen -- 5.7 Salinity and Sodicity -- 5.8 Increasing CO2 and Atmospheric N-deposition -- 5.9 Vegetation -- 5.10 Soil and Plant Characteristics -- 5.11 Forest Fires -- 6 Impact of Forest Generated GHG on Climate and Environmental Health -- 6.1 Deforestation and Climate Change -- 6.2 Forest Degradation and Climate Change -- 6.3 Forest Fires and Climate Change -- 7 Conclusion -- References -- 5: Effect of Greenhouse Gases on Human Health -- 1 Introduction -- 1.1 Major GHGs -- 1.1.1 CO2 -- 1.1.2 Ozone -- 1.1.3 Methane (CH4) -- 1.1.4 Chlorofluorocarbons (CFCs) -- 1.1.5 Nitrous Oxide -- 1.2 Sources of GHGs -- 2 Trends of GHGs Levels Considering Past Several Decades -- 3 Impacts of GHGs -- 4 Impacts of GHGs on Human Health -- 4.1 Mechanism of CO2 Effect on Human Health -- 4.1.1 Human Health Impacts Due to CO2 -- 4.2 Mechanisms of Ozone Effects -- 4.2.1 Effect of Ozone on Human Health. , 4.3 Mechanism of Methane´s Action on Human Body -- 4.3.1 Health Effects -- 4.4 Mechanism of Action of Chloroflouro Carbons (CFC) -- 4.5 Mechanism of Action of Nitrous Oxide -- 4.5.1 Effect on Human Health -- 5 Complexities Assessing Impact of Greenhouse Gases on Human Health -- 6 Control Measures to Reduce GHG Emissions to Protect Human Health -- 7 Conclusion -- References -- 6: Air Pollution and Greenhouse Gases Emissions: Implications in Food Production and Food Security -- 1 Introduction -- 2 How Climate Change Influences Food Security? -- 2.1 Link Between GHGs, Air Quality, and Climate -- 2.1.1 Agriculture: A Source of Greenhouse Gases and Air Pollution -- 3 Role of SLCP and Greenhouse Gas (Ozone and Black Carbon) Emissions in Food Production -- 3.1 Considering O3 with Temperature Extremes Under CC -- 4 Food Security, Food Production, and Air Pollution: Scenario in India -- 4.1 Performance of India in Terms of Food Availability -- 4.2 Air Pollution Status in India -- 4.2.1 Biomass Burning in Northern Indian States -- 4.3 Temporal Evolution of Food Crop Production and Vegetation Index in North India and Its Relation to Air Pollution -- Box 6.1 Agricultural Growth in Punjab and Haryana: The Two Main Green Revolution States -- 4.4 Crop Yield Losses Due to Climate Change and Air Pollution -- 5 Conclusion -- References -- 7: Optimization of Greenhouse Gas Emissions Through Simulation Modeling: Analysis and Interpretation -- 1 Introduction -- 2 Need for Climate Modeling -- 2.1 Energy Balance Models (EBMs) -- 2.2 Earth System Models of Intermediate Complexity (EMICs) -- 2.3 Global Climate Models or Global/General Circulation Models (GCMs) -- 3 Energy Models -- 3.1 Scenario-Based Stock-Turnover Model -- 3.2 Bottom-Up Optimization Model -- 3.3 The Macroeconomic Models -- 3.4 Economic-Dispatch Production Simulation Model. , 4 General Circulation Models (GCMs) -- 4.1 Coupled Atmosphere-Ocean Climate Model (CNRM) -- 5 Global Climate Model -- 6 Integrated Assessment Modeling -- 6.1 Need for Integrated Modeling -- 6.2 Integrated Assessment Model -- 6.2.1 The Asian-Pacific Integrated Model (AIM) -- 6.2.2 Dynamic Integrated Model of Climate and the Economy (DICE) -- 6.2.3 Feedback-Rich Energy-Economy Model (FREE) -- 6.2.4 Integrated Climate Assessment Model (ICAM) -- 6.2.5 Integrated Model to Assess the Greenhouse Effect (IMAGE) -- 6.2.6 Integrated Global System Model (IGSM) -- 6.2.7 Mini Climate Assessment Model (MiniCAM) -- 6.2.8 Regional Integrated Model of Climate and the Economy (RICE) -- 7 Conclusion -- References -- 8: Role of Biomass Burning in Greenhouse Gases Emission -- 1 Introduction -- 2 Sources of Major Greenhouse Gases -- 3 The Scenario of BB Emissions -- 3.1 BB Emissions in Asia -- 3.2 BB Emissions Pattern Change Over the Last Millennium: Inferences from Paleo Records in Polar Ice Cores -- 3.3 Remote Sensing of BB Emission Activity -- 4 The Need for Initiatives to Tackle Air Pollution -- 5 Conclusions -- 6 Recommendations for Clean Air to All -- 6.1 Need for Spatio-Temporal Data Set on Air Pollutants -- 6.2 Determination of Uncertainties -- 6.3 Building Up of Multiple-Year Emission Inventories -- 6.4 Reconcile Top-Down and Bottom-Up Approaches -- 6.5 Clean and Green Air Action Plan -- References -- 9: Ozone Impacts and Climate Forcing: Thailand as a Case Study -- 1 Introduction -- 2 Global Tropospheric Ozone Precursors and Ozone Trends -- 3 Tropospheric Ozone Chemistry: Major Sources and Sinks -- 4 Effects of Tropospheric Ozone -- 5 Ozone as a Greenhouse Gas -- 6 Relationship Between Ozone and Its Precursors -- 7 Ozone Management -- 8 Summary -- References -- 10: Role of Nanotechnology in Combating CO2 in Atmosphere -- 1 Introduction -- 2 Metal Oxides. , 3 Alkali Metal Oxides -- 4 Alkaline Earth Metal Oxides -- 5 Transition Metal Oxides -- 6 Perovskites -- 7 Carbon-Based Nano-Sorbents -- 8 Nanoporous Carbon-Based Materials -- 9 Carbon Nanotubes (CNT) -- 10 Graphene -- 11 Metalorganic Frameworks -- 12 Reduction of CO2 by Different Methods with MoFs -- 13 Mesoporous Silica Nano Particles -- 13.1 Nano Zeolites -- 13.2 Nanobiocatalyst -- 14 Conclusion -- References -- 11: Mitigation Strategies of Greenhouse Gas Control: Policy Measures -- 1 Introduction -- 2 Global Scenario -- 2.1 UNFCCC -- 2.2 KYOTO Protocol -- 2.3 Copenhagen Summit, 2009 -- 2.4 LIMA Climate Change Conference, 2014 -- 2.5 Marrakech Climate Change Conference, 2016 -- 2.6 Paris Agreement COP 21, 2015 -- 3 Mitigation Strategies: Regulatory Approaches -- 3.1 GHG Mitigation Options -- 3.2 Market Based Mitigation Policies (MBMPs) -- 3.3 Geo-engineering -- 4 Developed Countries -- 4.1 Japan -- 4.2 Sweden -- 4.3 United Kingdom -- 5 Developing Countries -- 5.1 India -- 5.2 Brazil -- 5.3 China -- 6 Conclusion -- References -- Glossary of Terms.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...