GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2024-02-07
    Description: A comprehensive understanding of the deep-sea environment and mining’s likely impacts is necessary to assess whether and under what conditions deep-seabed mining operations comply with the International Seabed Authority’s obligations to prevent ‘serious harm’ and ensure the ‘effective protection of the marine environment from harmful effects’ in accordance with the United Nations Convention on the Law of the Sea. A synthesis of the peer-reviewed literature and consultations with deep-seabed mining stakeholders revealed that, despite an increase in deep-sea research, there are few categories of publicly available scientific knowledge comprehensive enough to enable evidence-based decision-making regarding environmental management, including whether to proceed with mining in regions where exploration contracts have been granted by the International Seabed Authority. Further information on deep-sea environmental baselines and mining impacts is critical for this emerging industry. Closing the scientific gaps related to deep-seabed mining is a monumental task that is essential to fulfilling the overarching obligation to prevent serious harm and ensure effective protection, and will require clear direction, substantial resources, and robust coordination and collaboration. Based on the information gathered, we propose a potential high-level road map of activities that could stimulate a much-needed discussion on the steps that should be taken to close key scientific gaps before any exploitation is considered. These steps include the definition of environmental goals and objectives, the establishment of an international research agenda to generate new deep-sea environmental, biological, and ecological information, and the synthesis of data that already exist.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-07
    Description: Highlights • Surface sediments react quickly with leaking CO2 and release cations into porewaters. • Both carbonate and silicate mineral dissolution lead to neutralization of CO2 in the sediments. • During short-term exposure to CO2 no toxic substances were released from North Sea surface sediments. • Porewater composition can be used as a diagnostic indicator of CO2 leakage from storage reservoirs. Abstract Sub-seabed geological CO2 storage is discussed as a climate mitigation strategy, but the impact of any leakage of stored CO2 into the marine environment is not well known. In this study, leakage from a CO2 storage reservoir through near-surface sediments was mimicked for low leakage rates in the North Sea. Field data were combined with laboratory experiments and transport-reaction modelling to estimate CO2 and mineral dissolution rates, and to assess the mobilization of metals in contact with CO2-rich fluids and their potential impact on the environment. We found that carbonate and silicate minerals reacted quickly with the dissolved CO2, increasing porewater alkalinity and neutralizing about 5% of the injected CO2. The release of Ca, Sr, Ba and Mn was mainly controlled by carbonate dissolution, while Fe, Li, B, Mg, and Si were released from silicate minerals, mainly from deeper sediment layers. No toxic metals were released from the sediments and overall the injected CO2 was only detected up to 1 m away from seabed CO2 bubble streams. Our results suggest that low leakage rates of CO2 over short timescales have minimal impact on the benthic environment. However, porewater composition and temperature are effective indicators for leakage detection, even at low CO2 leakage rates.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-02-07
    Description: Highlights • In-situ temperature measurements were conducted at the Danube deep sea fan. • Operations were performed with the MARUM-MeBo200 seafloor drill rig. • The BSR is located ∼20 m below the current gas hydrate stability zone. • Seismic data suggest presence of shallower BSR-like events. Abstract Coring, geophysical logging, and in-situ temperature measurements were performed with the MARUM-MeBo200 seafloor rig to characterize gas hydrate occurrences in sediments of the Danube deep sea fan, off Romania, Black Sea. The new drilling data showed no evidence for significant gas hydrate saturations within the sediments but the presence of free gas at the depth of the bottom-simulating reflector (BSR). In-situ temperature and core-derived geochemical data suggest that the current base of the gas hydrate stability zone (BGHSZ) is ∼20 m shallower than the BSR. Investigation of the seismic data around the drill sites shows several locations where free gas previously trapped at a former BGHSZ migrated upwards forming a new reflection above the BSR. This shows that the gas hydrate system in the Danube deep sea fan is still responding to climate changes initiated at the end of the last glacial maximum.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-07
    Description: Highlights • An artificial CO2 release demonstrated MMV techniques for offshore CCS. • Detection of leakage was demonstrated using acoustic, chemical and physical approaches. • Attribution of leakage was proved possible using artificial and natural tracer compounds. • Leakage quantification was possible using approaches not previously applied to CCS studies. • Non-catastrophic leaks were detected at levels below those that would cause environmental harm. Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-07
    Description: Highlights • Geochemical analyses highlight multiple diagenesis processes occurring in the sediment. • Intense methane seepages and organic matter degradation contribute to the sulfate reduction. • Chemical of dissolved and mineral iron species indicate that iron is associated with clay minerals. • In response to seawater intrusion, ion exchange, dissolution and reverse weathering reactions change the composition of clay constituting the sediment. Abstract Pore water and sediment geochemistry in the western Black Sea were investigated on long Calypso piston core samples. Using this type of coring device facilitates the recovery of the thick sediment record necessary to analyze transport-reaction processes in response to the postglacial sea-level rise and intrusion of Mediterranean salt water 9 ka ago, and thus, to better characterize key biogeochemical processes and process changes in response to the shift from lacustrine to marine bottom water composition. Complementary data indicate that organic matter degradation occurs in the upper 15 m of the sediment column. However, sulfate reduction coupled with Anaerobic Methane Oxidation (AOM) is the dominant electron-accepting process and characterized by a shallow Sulfate Methane Transition Zone (SMTZ). Net silica dissolution, total alkalinity (TA) maxima and carbonate peaks are found at shallow depths. Pore water profiles clearly show the uptake of K+, Mg2+ and Na + by, and release of Ca2+ and Sr2+ from the heterogeneous lacustrine sediments, which is likely controlled by chemical reactions of silicate minerals and changes in clay mineral composition. Iron (Fe2+) and manganese (Mn2+) maxima largely coincide with Ca2+ peaks and suggest a close link between Fe2+, Mn2+ and Ca2+ release. We hypothesize that the Fe2+ maxima below the SMTZ result from deep Fe3+ reduction linked to organic matter degradation, either driven by DOC escaping from the shallow sulfate reduction zone or slow degradation of recalcitrant POC. The chemical analysis of dissolved and solid iron species indicates that iron is essentially associated with clay minerals, which suggests that microbial iron reduction is influenced by clay mineral composition and bioavailability of clay mineral-bound Fe(III). Overall, our study suggests that postglacial seawater intrusion plays a major role in shaping redox zonation and geochemical profiles in the lacustrine sediments of the Late Quaternary.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-02-07
    Description: Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (~3 m 49 below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-07
    Description: Evaluation of seismic reflection data has identified the presence of fluid escape structures cross-cutting overburden stratigraphy within sedimentary basins globally. Seismically-imaged chimneys/pipes are considered to be possible pathways for fluid flow, which may hydraulically connect deeper strata to the seabed. These fluid migration pathways through the overburden must be constrained to enable secure, long-term subsurface carbon dioxide (CO2) storage. We have investigated a site of natural active fluid escape in the North Sea, the Scanner Pockmark Complex, to determine the physical characteristics of focused fluid conduits, and how they control fluid flow. Here we show that a multi-scale, multi disciplinary experimental approach is required for complete characterisation of fluid escape structures. Geophysical techniques are necessary to resolve fracture geometry and subsurface structure (e.g., multifrequency seismics) and physical parameters of sediments (e.g., controlled source electromagnetics) across length scales (m to km). At smaller (mm to cm) scales, sediment cores were sampled directly and their physical and chemical properties assessed using laboratory-based methods. Numerical modelling approaches bridge the resolution gap, though their validity is dependent on calibration and constraint from field and laboratory experimental data. Further, time-lapse seismic and acoustic methods capable of resolving temporal changes are key for determining fluid flux. Future optimisation of experiment resource use may be facilitated by the installation of permanent seabed infrastructure, and replacement of manual data processing with automated workflows. This study can be used to inform measurement, monitoring and verification workflows that will assist policymaking, regulation, and best practice for CO2 subsurface storage operations.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-07
    Description: Highlights • A biogeochemical baseline of sediment geochemistry at potential offshore CCS sites. • Diagnostic indicators of CO2 leakage based on stoichiometry of porewater chemistry. • Porewater chemistry is modified by reverse weathering processes at Goldeneye site. Abstract Injection of carbon dioxide (CO2) into subseafloor reservoirs is gaining traction as a strategy for mitigating anthropogenic CO2 emissions to the atmosphere. Yet, potential leakage, migration and dissolution of externally-supplied CO2 from such reservoirs are a cause for concern. The potential impact of CO2 leakage on the biogeochemistry of sediments and overlying waters in the North Sea was studied during a controlled subsurface CO2 release experiment in 2019 at a potential carbon capture and storage site (Goldeneye). This study describes the natural (unperturbed) biogeochemistry of sediments. They are classified as muddy sand to sandy mud with low organic carbon content (∼0.6 %). Distributions of dissolved inorganic carbon (DIC) and total alkalinity (TA) in sediment porewaters are reported in addition to in situ benthic fluxes of dissolved nutrients and oxygen between the sediments and the overlying water. Oxygen fluxes into the sediment, measured using benthic chambers and eddy covariance, were 6.18 ± 0.58 and 5.73 ± 2.03 mmol m−2 d-1, respectively. Diagnostic indicators are discussed that could be used to detect CO2 enrichment of sediments due to reservoir leakage at CCS sites. These include the ratio TA and ammonium to sulfate in sediment porewaters, benthic fluxes and chloride-normalized cation distributions. These indicators currently suggest that the organic carbon at Goldeneye has an oxidation state below zero and is mainly degraded via sulfate reduction. Carbonate precipitation is apparently negligible, whereas decreases in Mg2+ and K+ point toward ongoing alteration of lithogenic sediments by reverse weathering processes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-02-07
    Description: Highlights • Four seafloor hydrocarbon emissions in the Eastern Black Sea were investigated • Eocene and/or Oligocene-Miocene Formations are most likely sources for oil and gas • Mixed secondary microbial and oil-associated thermogenic hydrocarbons at all sites • Site-specific light hydrocarbon compositions result from different mixing ratios Abstract Numerous hydrocarbon seep sites at the continental shelf, slope, and in the deep water basin are known to feed the Black Sea water reservoir of dissolved methane. In this study, we identified the likely sources of gas and oil that are emitted at four sites located on the continental slope offshore Georgia in the Eastern Black Sea at 830 to 1,140 m water depth – an area with gas seepage only (Batumi seep area) and three areas of joint gas and oil seepage (Iberia Mound, Colkheti Seep, and Pechori Mound). The geochemistry of bulk parameters, organic fractions and individual hydrocarbon biomarkers in near-surface sediments and of gas/oil expelled from the seafloor was analyzed and jointly interpreted to assign most likely hydrocarbon source rocks in the studied region. Presence of oleanane in shallow oil-impregnated sediments and oil slicks attests that the source rock at all sites is younger than Mid Cretaceous in age. We conclude that hydrocarbons ascending at all the four seepage areas originate from the Eocene Kuma Formation and/or the Oligocene–Lower Miocene Maikop Group, which are considered the principal hydrocarbon sources in the Eastern Black Sea region. Distributions of crude oil biomarkers in shallow sediments suggests moderate to heavy biodegradation. C1/C2+ ratios (10 to 4,163) along with stable C and H isotopic ratios (δ13C-CH4 ‒46.3 to ‒53.1.3‰ V-PDB; δ2H-CH4 ‒159 to ‒178‰ SMOW) indicate gas mixtures of oil-associated thermogenic and secondary microbial light hydrocarbons that are discharged from the four seep sites. Light hydrocarbons discharged at the Batumi Seep area are characterized by significant enrichments of methane, but almost similar δ13C-CH4 values if compared to the other study sites. Such methane enrichments likely result from a comparably higher degree of petroleum degradation and associated formation of secondary microbial methane.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-02-07
    Description: Highlights: • Camera observations document regional deposition of cephalopod remains on the abyssal plain. • More than 300 Argonauta egg cases were observed at 3970–4551 m in the central east Pacific between 2010 and 2020. • Shells were in various states of disintegration owing to damage, scavenging and dissolution. • Sinking epipelagic Argonauta egg cases to abyssal depths is a pathway in the carbon pump. • In situ observations show that shell decomposition takes about 90 days in this region. Calcifying plankton in the upper ocean produce calcium carbonate (CaCO3) shells that sink to the seafloor after death resulting in the vertical transport of inorganic carbon in shells and organic carbon in carcasses. In situ observations of pelagic detritus on the abyssal plain are very scarce. Carcasses are rapidly scavenged and shells may dissolve owing to undersaturation of deep waters with respect to CaCO3. We observed more than 300 egg cases of the epipelagic cephalopod Argonauta sp. in 9 large seafloor image surveys investigated across the Clarion Clipperton Zone in the Pacific between 2010 and 2020. Females of this octopus produce calcite egg cases that are used for buoyancy and as substrate on which to attach their eggs in the water column. These cases sink to the seafloor, presumably upon death of the octopus. In one area, between 3970 and 4551 m water depth surveyed in 2019, we documented more than 200 complete and fragments of egg cases (5.84 ± 1.8 cm in size) on the seafloor, complete and broken and in various states of dissolution. Here, we present observations of egg case dissolution in situ and of 99 white deposits that were likely largely dissolved egg cases. Our observations reveal a previously undocumented pathway of epipelagic inorganic carbon to the abyssal plain. Preliminary estimations indicate that the local contribution of Argonauta egg cases to the vertical transport of carbonates is likely small compared to other planktonic calcifiers, but the geographic extent of the deposition in the eastern Pacific is apparently large. This study highlights the need for in situ observations to discover and document carbon fluxes in the deep sea, and for consideration of life history traits in unraveling elusive pathways within the biological pump
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...