GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    In:  [Talk] In: UKCCSC Workshop "Potential environment effects of CO2 leakage in the marine and terrestrial environment: Understanding, monitoring, mitigation", 21.02.2012, Nottingham, United Kingdom .
    Publication Date: 2013-03-06
    Type: Conference or Workshop Item , NonPeerReviewed , info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-29
    Description: Highlights: • We review research since 2005 on potential impacts of leakage from CO2 storage. • We consider near surface onshore and offshore impacts and those on potable groundwaters. • Low level leakage through faults or wells is likely to be limited and recovery rapid. • Effects are reduced by mixing, dispersion and buffering. • Larger leaks are possible but less likely and should be easier to detect and remedy. Abstract: This paper reviews research into the potential environmental impacts of leakage from geological storage of CO2 since the publication of the IPCC Special Report on Carbon Dioxide Capture and Storage in 2005. Possible impacts are considered on onshore (including drinking water aquifers) and offshore ecosystems. The review does not consider direct impacts on man or other land animals from elevated atmospheric CO2 levels. Improvements in our understanding of the potential impacts have come directly from CO2 storage research but have also benefitted from studies of ocean acidification and other impacts on aquifers and onshore near surface ecosystems. Research has included observations at natural CO2 sites, laboratory and field experiments and modelling. Studies to date suggest that the impacts from many lower level fault- or well-related leakage scenarios are likely to be limited spatially and temporarily and recovery may be rapid. The effects are often ameliorated by mixing and dispersion of the leakage and by buffering and other reactions; potentially harmful elements have rarely breached drinking water guidelines. Larger releases, with potentially higher impact, would be possible from open wells or major pipeline leaks but these are of lower probability and should be easier and quicker to detect and remediate.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights • An artificial CO2 release demonstrated MMV techniques for offshore CCS. • Detection of leakage was demonstrated using acoustic, chemical and physical approaches. • Attribution of leakage was proved possible using artificial and natural tracer compounds. • Leakage quantification was possible using approaches not previously applied to CCS studies. • Non-catastrophic leaks were detected at levels below those that would cause environmental harm. Carbon capture and storage is a key mitigation strategy proposed for keeping the global temperature rise below 1.5 °C. Offshore storage can provide up to 13% of the global CO2 reduction required to achieve the Intergovernmental Panel on Climate Change goals. The public must be assured that potential leakages from storage reservoirs can be detected and that therefore the CO2 is safely contained. We conducted a controlled release of 675 kg CO2 within sediments at 120 m water depth, to simulate a leak and test novel detection, quantification and attribution approaches. We show that even at a very low release rate (6 kg day−1), CO2 can be detected within sediments and in the water column. Alongside detection we show the fluxes of both dissolved and gaseous CO2 can be quantified. The CO2 source was verified using natural and added tracers. The experiment demonstrates that existing technologies and techniques can detect, attribute and quantify any escape of CO2 from sub-seabed reservoirs as required for public assurance, regulatory oversight and emissions trading schemes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...