GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (18)
  • 2000-2004  (26)
Document type
Keywords
Years
Year
  • 11
    Publication Date: 2024-05-27
    Description: We assessed the responses of solitary cells of Arctic Phaeocystis pouchetii (Strain PS78) grown under a matrix of temperature (2°C vs. 6°C), light intensity (55 vs. 160 μmol photons m-2 s-1) and CO2 partial pressures (pCO2; 400 vs. 1000 μatm). Before the experiments, the strain (isolated during Polarstern cruise PS78 in 2011) was kept as stock culture at 1° in 0.2 µm sterile-filtered Arctic seawater (Salinity 33), enriched with vitamins and trace metals according to F/2 medium (Guillard & Ryther, 1962). Nitrate and phosphate were added in concentrations of 100 and 6 µmol L-1, respectively. Experiments were conducted between May 2016 and September 2017 at the Alfred-Wegener-Institute, using standardized media and continuous light exposition. Next to acclimation parameters (growth rates, particulate and dissolved organic carbon and nitrogen, chlorophyll a content), we measured physiological processes in-vivo (electron transport rates and net photosynthesis) using fast-repetition rate fluorometry and membrane-inlet mass spectrometry.
    Keywords: Alkalinity, total; Bottle incubation; calculated from carbonate chemistry using the CO2Sys Excel sheet (Pierrot, Lewis & Wallace, 2006); calculated from chlorophyll a (chl a) and particulate organic carbon (POC) quota; calculated from growth rate and particulate organic carbon (POC) quota; calculated from growth rate and particulate organic nitrogen (PON) quota; calculated from particulate organic carbon (POC) and particulate organic nitrogen (PON) quota; Carbon, inorganic, dissolved; Carbon dioxide, partial pressure; Colorimetric detection, TRAACs continuous flow autoanalyzer, according to the method of Stoll et al. (2001); Coulter counter, Beckman Coulter, Multisizer 3; DATE/TIME; Electron transport rate, relative; Elemental analyzer, EuroVector, EuroEA; EXP; Experiment; Experimental treatment; Fitted parameter using the photosynthesis vs. Irradiance equation from Rokitta & Rost (2012), raw data obtained using a membrane-inlet mass spectrometer (MIMS) as described in Kottmeier, Rokitta & Rost (2016); Fitted parameter using the photosynthesis vs. Irradiance equation from Rokitta & Rost (2012); raw data obtained using a fast-repetition rate fluoremeter (FRRF), FastOcean PTX with FastAct Laboratory system, Chelsea Technologies after Oxborough et al. (201; Fluorometer, Turner Designs, TD-700, using acidification method (Knap et al., 1996); Fram Strait; Identification; Initial slope of the photosynthesis-irradiance curve; Initial slope of the photosynthesis-irradiance curve, relative electron transfer rate per unit light; Light; Light acclimation index; Maximum photosynthesis rate, oxygen, per chlorophyll a; model simulation; pCO2; pCO2 mixed from CO2-free air and pure CO2 with a custom built gas mixing system; pH; pH 826 mobile handheld device, with Aquatrode Plus, Metrohm; Phaeocystis_pouchetii_PS78; Phaeocystis pouchetii; Phaeocystis pouchetii, carbon, organic, particulate/nitrogen, organic, particulate ratio; Phaeocystis pouchetii, chlorophyll a/carbon, organic, particulate ratio; Phaeocystis pouchetii, chlorophyll a quota per cell; Phaeocystis pouchetii, growth rate; Phaeocystis pouchetii, particulate organic carbon production per cell; Phaeocystis pouchetii, particulate organic carbon quota per cell; Phaeocystis pouchetii, particulate organic nitrogen production per cell; Phaeocystis pouchetii, particulate organic nitrogen quota per cell; Phytoplankton; RCP8.5; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strain; Temperature; Temperature, water; Thermometer, internal, Aquatrode Plus, Metrohm; Treatment: light intensity; Treatment: partial pressure of carbon dioxide; Treatment: temperature; Type of study; Universal light meter & data logger, WALZ, ULM-500, with 4Pi sensor, LI-COR
    Type: Dataset
    Format: text/tab-separated-values, 908 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-05-27
    Description: We assessed the responses of solitary cells of Arctic Phaeocystis pouchetii (Strain PS78) grown under a matrix of temperature (2°C vs. 6°C), light intensity (55 vs. 160 μmol photons m-2 s-1) and CO2 partial pressures (pCO2; 400 vs. 1000 μatm). Before the experiments, the strain (isolated during Polarstern cruise PS78 in 2011) was kept as stock culture at 1° in 0.2 µm sterile-filtered Arctic seawater (Salinity 33), enriched with vitamins and trace metals according to F/2 medium (Guillard & Ryther, 1962). Nitrate and phosphate were added in concentrations of 100 and 6 µmol L-1, respectively. Experiments were conducted between May 2016 and September 2017 at the Alfred-Wegener-Institute, using standardized media and continuous light exposition. Next to acclimation parameters (growth rates, particulate and dissolved organic carbon and nitrogen, chlorophyll a content), we measured physiological processes in-vivo (electron transport rates and net photosynthesis) using fast-repetition rate fluorometry and membrane-inlet mass spectrometry. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2022) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2024-01-20.
    Keywords: Alkalinity, total; Aragonite saturation state; Arctic; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottle incubation; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; calculated from carbonate chemistry using the CO2Sys Excel sheet (Pierrot, Lewis & Wallace, 2006); calculated from chlorophyll a (chl a) and particulate organic carbon (POC) quota; calculated from growth rate and particulate organic carbon (POC) quota; calculated from growth rate and particulate organic nitrogen (PON) quota; calculated from particulate organic carbon (POC) and particulate organic nitrogen (PON) quota; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate, per cell; Carbon, organic, particulate, production per cell; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a/particulate organic carbon ratio; Chlorophyll a per cell; Chromista; Colorimetric detection, TRAACs continuous flow autoanalyzer, according to the method of Stoll et al. (2001); Coulter counter, Beckman Coulter, Multisizer 3; Date/time end; Date/time start; Electron transport rate, relative; Elemental analyzer, EuroVector, EuroEA; EXP; Experiment; Experimental treatment; Fitted parameter using the photosynthesis vs. Irradiance equation from Rokitta & Rost (2012), raw data obtained using a membrane-inlet mass spectrometer (MIMS) as described in Kottmeier, Rokitta & Rost (2016); Fitted parameter using the photosynthesis vs. Irradiance equation from Rokitta & Rost (2012); raw data obtained using a fast-repetition rate fluoremeter (FRRF), FastOcean PTX with FastAct Laboratory system, Chelsea Technologies after Oxborough et al. (201; Fluorometer, Turner Designs, TD-700, using acidification method (Knap et al., 1996); Fram Strait; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth rate; Haptophyta; Initial slope of the photosynthesis-irradiance curve, relative electron transfer rate per unit light; Laboratory experiment; Light; Light acclimation index; Maximum photosynthesis rate, oxygen, per chlorophyll a; Nitrogen, organic, particulate, per cell; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pCO2 mixed from CO2-free air and pure CO2 with a custom built gas mixing system; Pelagos; pH; pH 826 mobile handheld device, with Aquatrode Plus, Metrohm; Phaeocystis_pouchetii_PS78; Phaeocystis pouchetii; Phytoplankton; Polar; Primary production/Photosynthesis; Production of particulate organic nitrogen; Replicate; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Strain; Temperature; Temperature, water; Thermometer, internal, Aquatrode Plus, Metrohm; Treatment: light intensity; Treatment: partial pressure of carbon dioxide; Treatment: temperature; Type of study; Universal light meter & data logger, WALZ, ULM-500, with 4Pi sensor, LI-COR
    Type: Dataset
    Format: text/tab-separated-values, 1580 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-06-12
    Description: Discrete seawater samples for dissolved inorganic carbon (DIC) and total alkalinity (TA) were collected from the Polarstern (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_321) and Ocean City (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_935) CTD/Rosette systems during the Multidisciplinary drifting observatory for the study of Arctic Climate (MOSAiC) expedition, 20 September 2019 – 14 October 2020. Following Dickson et al. (2007), seawater samples were collected between 30 October 2019 and 28 September 2020 in borosilicate (3.3) bottles (250 ml), fixed with saturated mercuric chloride (HgCl₂) solution (100 µl), capped with greased (Apiezon® L) ground glass stoppers secured by insulating tape, and stored dark +4°C until post-cruise analysis at the Institute of Marine Research (IMR, Norway), University of East Anglia (UEA, UK), and Hokkaido University (Japan). DIC was determined by coulometric titration (Johnson et al., 1985) using a Versatile INstrument for the Determination of Total inorganic carbon and titration Alkalinity (VINDTA 3C, Marianda, Germany) at UEA, a VINDTA 3D at IMR, and a custom-built extraction system at Hokkaido University (Ono et al., 1998). TA was determined by potentiometric titration using a VINDTA 3C at UEA, a Versatile Instrument for the Determination of Titration Alkalinity (VINDTA 3S, Marianda, Germany) at IMR, and a TA analyzer ATT-05 (Kimoto Electric Co., Ltd., Japan) at Hokkaido University. The accuracy for both DIC and TA was set at IMR and UEA by routine analysis of certified reference material (CRM batch #182, #191) distributed by A. G. Dickson (Scripps Institution of Oceanography, La Jolla, CA, USA). Reference materials (Batch AR and AU; KANSO Technos Co., Ltd., Osaka, Japan), traceable to the Scripps CO₂ CRM, were used at Hokkaido University. Analytical precision for DIC and TA content is 〈 ±2 μmol/kg and 〈 ±2 μmol/kg, respectively, based on CRM replicates. Based on secondary quality control (Jutterström et al., 2010; Tanhua et al., 2010), DIC and TA were adjusted by -8 µmol/kg and -23 µmol/kg, respectively, for events PS122/1_7-49, PS122/1_8-46, PS122/1_9-50, and PS122/1_10-45. Data quality is indicated by flags following the consolidated WOCE system of Jiang et al. (2022).
    Keywords: Alkalinity, total; Arctic Ocean; Bottle number; Carbon, inorganic, dissolved; Carbonate chemistry; Coulometric titration according to Johnson et al. 1985; measured with total inorganic carbon and titration alkalinity analyzer, Marianda, VINDTA; CTD/Rosette; CTD-RO; DATE/TIME; DEPTH, water; Dissolved inorganic carbon; ELEVATION; Event label; HAVOC; LATITUDE; LONGITUDE; Mosaic; MOSAiC; MOSAiC_ECO; MOSAiC20192020; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Polarstern; Pressure, water; PS122/1; PS122/1_10-44; PS122/1_5-40; PS122/1_6-58; PS122/1_7-49; PS122/1_8-46; PS122/1_9-50; PS122/2; PS122/2_17-41; PS122/2_18-34; PS122/2_19-56; PS122/2_20-46; PS122/2_21-65; PS122/2_22-47; PS122/2_23-63; PS122/2_25-54; PS122/3; PS122/3_30-41; PS122/3_30-53; PS122/3_31-59; PS122/3_32-75; PS122/3_33-69; PS122/3_34-67; PS122/3_34-77; PS122/3_35-63; PS122/3_35-77; PS122/3_36-59; PS122/3_36-81; PS122/3_37-45; PS122/3_37-88; PS122/3_38-54; PS122/3_38-69; PS122/3_39-51; PS122/3_40-36; PS122/4; PS122/4_44-184; PS122/4_44-67; PS122/4_45-100; PS122/4_45-3; PS122/4_45-31; PS122/4_45-75; PS122/4_45-79; PS122/4_45-82; PS122/4_45-85; PS122/4_45-96; PS122/4_46-60; PS122/4_47-108; PS122/4_47-60; PS122/4_48-15; PS122/4_48-62; PS122/4_49-14; PS122/4_49-25; PS122/5; PS122/5_59-149; PS122/5_59-274; PS122/5_59-306; PS122/5_59-357; PS122/5_59-363; PS122/5_59-62; PS122/5_59-72; PS122/5_60-69; PS122/5_60-89; PS122/5_61-161; PS122/5_61-189; PS122/5_61-211; PS122/5_62-38; PS122/5_62-66; PS122/5_62-91; PS122/5_63-111; PS122/5_63-35; PS122/5_63-53; Quality flag, alkalinity, total; Quality flag, carbon, organic, dissolved; Quality flag, salinity; Quality flag, water temperature; Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic OCean; Salinity; Temperature, water; Total alkalinity; Uniform resource locator/link to sensor metadata; World Oceans Circulation Experiment (WOCE) quality flags according to Jiang et al. (2022)
    Type: Dataset
    Format: text/tab-separated-values, 8580 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-06-12
    Description: Samples for the analysis of dissolved nutrients were collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) from the water column, sea ice cores and from special events/locations (e.g., leads, melt ponds, brine, incubation experiments). Samples for dissolved inorganic nutrients (NO3 +NO2 , NO2 , PO4 , Si(OH)4, NH4 ) were analysed onboard during PS122 legs 1 to 3, with duplicate samples collected from CTD casts for later analysis of total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP). From leg 4, all samples collected were stored frozen at -20°C for later analysis. Analyses of stored samples were carried out at the AWI Nutrient Facility between January and March 2021. Nutrient analyses onboard and on land were carried out using a Seal Analytical AA3 continuous flow autoanalyser, controlled by the AACE software version 7.09. Best practice procedures for the measurement of nutrients were adopted following GO-SHIP recommendations (Hydes et al., 2010; Becker et al., 2019). Descriptions of sample collection and handling can be found in the various cruise reports (Haas & Rabe, 2023; Kanzow & Damm, 2023; Rex & Metfies, 2023; Rex & Nicolaus, 2023; Rex & Shupe, 2023). Here we provide data from the water column, obtained from the analysis of discrete samples collected from CTD-Rosette casts from Polarstern (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_321) and Ocean City (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_935). Data from sea ice cores and special events are presented elsewhere. Data from sea ice cores and special events are presented elsewhere. For reference, here we included data from CTD-BTL files associated with nutrient samples. These data are presented by Tippenhauer et al. (2023) Polarstern CTD and Tippenhauer et al. (2023) Ocean City CTD.
    Keywords: Ammonium; Ammonium, standard deviation; Arctic Ocean; Arctic Ocean Nutrient Data; Bottle number; CTD/Rosette; CTD-RO; DATE/TIME; DEPTH, water; ELEVATION; Event label; Gear; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ECO; MOSAiC20192020; MOSAiC Nutrient Data; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Nitrate and Nitrite; Nitrate and Nitrite, standard deviation; Nitrite; Nitrite, standard deviation; Nitrogen, total dissolved; Nitrogen, total dissolved, standard deviation; Phosphate; Phosphate, standard deviation; Phosphorus, total dissolved; Phosphorus, total dissolved, standard deviation; Polarstern; Pressure, water; PS122/2; PS122/2_23-63; PS122/3; PS122/3_29-8; PS122/3_30-9; PS122/3_35-92; PS122/3_36-115; PS122/3_37-15; PS122/3_39-82; PS122/3_40-36; PS122/3_42-32; PS122/4; PS122/4_44-184; PS122/4_44-67; PS122/4_45-100; PS122/4_45-3; PS122/4_45-31; PS122/4_45-75; PS122/4_45-79; PS122/4_45-82; PS122/4_45-85; PS122/4_45-9; PS122/4_45-96; PS122/4_46-2; PS122/4_46-35; PS122/4_46-60; PS122/4_46-83; PS122/4_46-87; PS122/4_46-91; PS122/4_47-108; PS122/4_47-60; PS122/4_48-15; PS122/4_48-155; PS122/4_48-62; PS122/4_48-96; PS122/4_49-14; PS122/4_49-2; PS122/4_49-25; PS122/4_50-21; PS122/5; PS122/5_59-149; PS122/5_59-274; PS122/5_59-306; PS122/5_59-357; PS122/5_59-363; PS122/5_59-62; PS122/5_59-72; PS122/5_60-69; PS122/5_60-89; PS122/5_61-161; PS122/5_61-189; PS122/5_61-211; PS122/5_62-38; PS122/5_62-66; PS122/5_62-91; PS122/5_63-111; PS122/5_63-35; PS122/5_63-53; Quality flag, ammonium; Quality flag, nitrate and nitrite; Quality flag, nitrite; Quality flag, nitrogen, total dissolved; Quality flag, phosphate; Quality flag, phosphorus, total dissolved; Quality flag, salinity; Quality flag, silicon; Quality flag, water temperature; Salinity; Seawater Nutrients; Silicon; Silicon, standard deviation; Temperature, water; Water Column Nutrient Data
    Type: Dataset
    Format: text/tab-separated-values, 31223 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-06-12
    Description: Samples for the analysis of dissolved nutrients were collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) from the water column, sea ice cores and from special events/locations (e.g., leads, melt ponds, brine, incubation experiments). Samples for dissolved inorganic nutrients (NO3 +NO2 , NO2 , PO4 , Si(OH)4, NH4 ) were analysed onboard during PS122 legs 1 to 3, with duplicate samples collected from CTD casts for later analysis of total dissolved nitrogen (TDN) and total dissolved phosphorus (TDP). From leg 4, all samples collected were stored frozen at -20°C for later analysis. Analyses of stored samples were carried out at the AWI Nutrient Facility between January and March 2021. Nutrient analyses onboard and on land were carried out using a Seal Analytical AA3 continuous flow autoanalyser, controlled by the AACE software version 7.09. Best practice procedures for the measurement of nutrients were adopted following GO-SHIP recommendations (Hydes et al., 2010; Becker et al., 2019). Descriptions of sample collection and handling can be found in the various cruise reports (Haas & Rabe, 2023; Kanzow & Damm, 2023; Rex & Metfies, 2023; Rex & Nicolaus, 2023; Rex & Shupe, 2023). Here we provide data from the water column, obtained from the analysis of discrete samples collected from CTD-Rosette casts from Polarstern (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_321) and Ocean City (https://sensor.awi.de/?site=search&q=vessel:polarstern:ctd_sbe9plus_935). Data from sea ice cores and special events are presented elsewhere. Data from sea ice cores and special events are presented elsewhere. For reference, here we included data from CTD-BTL files associated with nutrient samples. These data are presented by Tippenhauer et al. (2023) Polarstern CTD and Tippenhauer et al. (2023) Ocean City CTD.
    Keywords: Ammonium; Ammonium, standard deviation; Arctic Ocean; Arctic Ocean Nutrient Data; Bottle number; CTD/Rosette; CTD-RO; DATE/TIME; DEPTH, water; ELEVATION; Event label; Gear; LATITUDE; LONGITUDE; MOSAiC; MOSAiC_ECO; MOSAiC20192020; MOSAiC Nutrient Data; Multidisciplinary drifting Observatory for the Study of Arctic Climate; Nitrate and Nitrite; Nitrate and Nitrite, standard deviation; Nitrite; Nitrite, standard deviation; Phosphate; Phosphate, standard deviation; Polarstern; Pressure, water; PS122/1; PS122/1_10-44; PS122/1_6-58; PS122/1_7-49; PS122/1_8-46; PS122/1_9-50; PS122/2; PS122/2_16-21; PS122/2_16-54; PS122/2_16-94; PS122/2_17-41; PS122/2_17-78; PS122/2_17-8; PS122/2_18-16; PS122/2_18-34; PS122/2_18-5; PS122/2_18-81; PS122/2_19-4; PS122/2_19-56; PS122/2_19-89; PS122/2_20-109; PS122/2_20-17; PS122/2_20-2; PS122/2_20-46; PS122/2_21-1; PS122/2_21-101; PS122/2_21-114; PS122/2_21-128; PS122/2_21-26; PS122/2_21-65; PS122/2_22-18; PS122/2_22-3; PS122/2_22-47; PS122/2_22-71; PS122/2_23-17; PS122/2_23-4; PS122/2_23-63; PS122/2_23-70; PS122/2_23-97; PS122/2_24-47; PS122/2_25-26; PS122/2_25-4; PS122/2_25-54; PS122/3; PS122/3_30-53; PS122/3_31-18; PS122/3_31-39; PS122/3_31-59; PS122/3_31-81; PS122/3_32-75; PS122/3_32-77; PS122/3_33-69; PS122/3_33-80; PS122/3_33-82; PS122/3_34-17; PS122/3_34-67; PS122/3_35-63; PS122/3_35-77; PS122/3_36-19; PS122/3_36-59; PS122/3_36-81; PS122/3_37-116; PS122/3_37-45; PS122/3_37-88; PS122/3_38-100; PS122/3_38-31; PS122/3_38-54; PS122/3_38-69; PS122/3_39-16; PS122/3_39-51; Quality flag, ammonium; Quality flag, nitrate and nitrite; Quality flag, nitrite; Quality flag, phosphate; Quality flag, salinity; Quality flag, silicon; Quality flag, water temperature; Salinity; Seawater Nutrients; Silicon; Silicon, standard deviation; Temperature, water; Water Column Nutrient Data
    Type: Dataset
    Format: text/tab-separated-values, 25249 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-07-10
    Description: We compared the effect of CO2 concentration ([CO2], ranging from ∼5 to ∼34 μmol l−1) at four different photon flux densities (PFD=15, 30, 80 and 150 μmol m−2 s−1) and two light/dark (L/D) cycles (16/8 and 24/0 h) on the coccolithophore Emiliania huxleyi. With increasing [CO2], a decrease in the particulate inorganic carbon to particulate organic carbon (PIC/POC) ratio was observed at all light intensities and L/D cycles tested. The individual response in cellular PIC and POC to [CO2] depended strongly on the PFD. POC production increased with rising [CO2], irrespective of the light intensity, and PIC production decreased with increasing [CO2] at a PFD of 150 μmol m−2 s−1, whereas below this light level it was unaffected by [CO2]. Cell growth rate decreased with decreasing PFD, but was largely independent of ambient [CO2]. The diurnal variation in PIC and POC content, monitored over a 38-h period (16/8 h L/D, PFD=150 μmol m−2 s−1), exceeded the difference in carbon content between cells grown at high (∼29 μmol l−1) and low (∼4 μmol l−1) [CO2]. However, consistent with the results described above, cellular POC content was higher and PIC content lower at high [CO2], compared to the values at low [CO2], and the offset was observed throughout the day. It is suggested that the observed sensitivity of POC production for ambient [CO2] may be of importance in regulating species-specific primary production and species composition
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-02-08
    Description: Enrichment of the oceans with CO2 may be beneficial for some marine phytoplankton, including harmful algae. Numerous laboratory experiments provided valuable insights into the effects of elevated pCO(2) on the growth and physiology of harmful algal species, including the production of phycotoxins. Experiments close to natural conditions are the next step to improve predictions, as they consider the complex interplay between biotic and abiotic factors that can confound the direct effects of ocean acidification. We therefore investigated the effect of ocean acidification on the occurrence and abundance of phycotoxins in bulk plankton samples during a long-term mesocosm experiment in the Gullmar Fjord, Sweden, an area frequently experiencing harmful algal blooms. During the experimental period, a total of seven phycotoxin-producing harmful algal genera were identified in the fjord, and in accordance, six toxin classes were detected. However, within the mesocosms, only domoic acid and the corresponding producer Pseudo-nitzschia spp. was observed. Despite high variation within treatments, significantly higher particulate domoic acid contents were measured in the mesocosms with elevated pCO(2). Higher particulate domoic acid contents were additionally associated with macronutrient limitation. The risks associated with potentially higher phycotoxin levels in the future ocean warrants attention and should be considered in prospective monitoring strategies for coastal marine waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  EPIC3Limnology and Oceanography, 47, pp. 120-128
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...