GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-09
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Pergamon Press
    In:  Deep Sea Research Part II: Topical Studies in Oceanography, 50 (1). pp. 281-298.
    Publication Date: 2020-08-05
    Description: Exchanges of water south of Africa between the South Indian Ocean and the South Atlantic Ocean are an important component of the global thermohaline circulation. Evidence exists that the variability in these exchanges, on both meso- and longer time scales, may significantly influence weather and climate patterns in the southern African region and the significance of these regional ocean–atmosphere interactions is discussed. Observations of the inter-ocean exchange are limited and it is necessary to augment these with estimates derived from models. As a first step in this direction, this study uses an eddy-permitting model to investigate the heat and volume transport in the oceanic region south of Africa and its variability on meso, seasonal and inter-annual time scales. On the annual mean, about Full-size image (〈1 K) (standard deviation Full-size image (〈1 K)) of heat flows west into the South Atlantic across 20°E (longitude of Cape Agulhas, the southernmost point of Africa), with just over Full-size image (〈1 K) (standard deviation Full-size image (〈1 K)) flowing north into the South Atlantic across 35°S. The seasonal variations in this transport are about 10% at 35°S in the South Atlantic and around 20% through 20°E; the model value of Full-size image (〈1 K) for summer (standard deviation ranging from Full-size image (〈1 K) in January to Full-size image (〈1 K) in March) appears consistent with respective estimates of 0.51 and Full-size image (〈1 K) derived from two WOCE summer cruises southwest of Cape Town to 45°S in 1990 and 1993. Volume transports of the Agulhas Current section through 35°S in the SW Indian Ocean range from 58 to Full-size image (〈1 K) in summer/autumn to 64–Full-size image (〈1 K) in winter/spring. The model results suggest that the inter-ocean exchange south of Africa is highly variable on seasonal through to interannual scales. If this variability is also the case in the real ocean (and the limited observations suggest that this is so), then there are likely to be significant implications for climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 33 . pp. 2307-2319.
    Publication Date: 2018-04-10
    Description: Processes that influence the volume and heat transport across the Greenland–Scotland Ridge system are investigated in a numerical model with ° horizontal resolution. The focus is on the sensitivity of cross-ridge transports and the reaction of the subpolar North Atlantic Ocean circulation to changes in wind stress and buoyancy forcing on seasonal to interannual timescales. A general relation between changes in wind stress or cross-ridge density contrasts and the overturning transport of Greenland–Iceland–Norwegian Seas source water is established from a series of idealized experiments. The relation is used subsequently to interpret changes in an experiment over the years 1992–97 with realistic forcing. On seasonal and interannual timescales there is a clear correlation between heat flux and wind stress curl variability. The realistic model suggests a steady decrease in the strength of the cyclonic subpolar gyre of the North Atlantic with a corresponding decrease in heat transport during the 1990s
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    World Scientifcic Publishing
    In:  [Paper] In: 10th Workshop on the Use of High Performance Cumputing in Meteorology: Realizing the TeraComputing, 04.-08.11.2002, Reading, UK . Realizing Teracomputing: Proceedings of the Tenth ECMWF Workshop on the Use of High Performance Computers in Meteorology; Reading, UK, 4 – 8 November 2002 ; pp. 257-267 .
    Publication Date: 2019-09-06
    Description: In the framework of FLAME (Family of Linked Atlantic Model Experiments) an eddy-permitting model of the Atlantic Ocean was used to hindcast the uptake and spreading of anthropogenic trace gases, CO2 and CFC, during the last century. The code is based on the public domain software MOM (Modular Ocean Model) Version 2.1. Towards a parallel version the code was extended for shmem and MPI message passing to achieve portability to Cray-T3E and NEC SX systems. The performance of this production code on Cray-T3E as well as NEC-SX5 and SX6 systems is discussed. To underline the need for high-resolution modeling some physical model results are presented.
    Type: Conference or Workshop Item , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-09-28
    Description: A special focus in data mining is to identify agglomerations of data points in spatial or spatio-temporal databases. Multiple applications have been presented to make use of such clustering algorithms. However, applications exist, where not only dense areas have to be identified, but also requirements regarding the correlation of the cluster to a specific shape must be met, i.e. circles. This is the case for eddy detection in marine science, where eddies are not only specified by their density, but also their circular-shaped rotation. Traditional clustering algorithms lack the ability to take such aspects into account. In this paper, we introduce Vortex Correlation Clustering which aims to identify those correlated groups of objects oriented along a vortex. This can be achieved by adapting the Circle Hough Transformation, already known from image analysis. The presented adaptations not only allow to cluster objects depending on their location next to each other, but also allows to take the orientation of individual objects into considerations. This allows for a more precise clustering of objects. A multi-step approach allows to analyze and aggregate cluster candidates, to also include final clusters, which do not perfectly satisfy the shape condition. We evaluate our approach upon a real world application, to cluster particle simulations composing such shapes. Our approach outperforms comparable methods of clustering for this application both in terms of effectiveness and efficiency.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced. A first version of FOCI consists of a global high-top atmosphere (ECHAM6.3) and an ocean model (NEMO3.6) as well as sea ice (LIM2) and land surface model components (JSBACH), which are coupled through the OASIS3-MCT software package. FOCI includes a number of optional modules which can be activated depending on the scientific question of interest. In the atmosphere, interactive stratospheric chemistry can be used (ECHAM6-HAMMOZ) to study, for example, the effects of the ozone hole on the climate system. In the ocean, a biogeochemistry model (MOPS) is available to study the global carbon cycle. A unique feature of FOCI is the ability to explicitly resolve mesoscale ocean eddies in specific regions. This is realized in the ocean through nesting; first examples for the Agulhas Current and the Gulf Stream systems are described here. FOCI therefore bridges the gap between coarse-resolution climate models and global high-resolution weather prediction and ocean-only models. It allows to study the evolution of the climate system on regional and seasonal to (multi-) decadal scales. The development of FOCI resulted from a combination of the long-standing expertise in ocean and climate modeling in several research units and divisions at GEOMAR. FOCI will thus be used to complement and interpret long-term observations in the Atlantic, enhance the process understanding of the role of mesoscale oceanic eddies for large-scale oceanic and atmospheric circulation patterns, study feedback mechanisms with stratospheric processes, estimate future ocean acidification, improve the simulation of the Atlantic Meridional Overturning Circulation changes and their influence on climate, ocean chemistry and biology. In this paper we present both the scientific vision for the development of FOCI as well as some technical details. This includes a first validation of the different model components using several configurations of FOCI. Results show that the model in its basic configuration runs stably under pre-industrial control as well as under historical forcing, and produces a mean climate and variability which compares well with observations, reanalysis products and other climate models. The nested configurations reduce some long-standing biases in climate models and are an important step forward to include the atmospheric response in multi-decadal eddy-rich configurations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Ecosystem connectivity is an essential consideration for marine spatial planning of competing interests in the deep sea. Immobile, adult communities are connected through freely floating larvae, depending on new recruits for their health and to adapt to external pressures. We hypothesize that the vertical swimming ability of deep-sea larvae, before they permanently settle at the bottom, is one way larvae can control dispersal. We test this hypothesis with more than 3x108 simulated particles with a range of active swimming behaviours embedded within the currents of a high-resolution ocean model. Despite much stronger horizontal ocean currents, vertical swimming of simulated larvae can have an order of magnitude impact on dispersal. These strong relationships between larval dispersal, pathways, and active swimming demonstrate that lack of data on larval behaviour traits is a serious impediment to modelling deep-sea ecosystem connectivity; this uncertainty greatly limits our ability to develop ecologically coherent marine protected area networks.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Litter and plastic pollution in the marine environment is of major concern when considering the health of ocean ecosystems, and have become an important focus of ocean research during recent years. There is still significant uncertainty surrounding the distribution and impact of marine plastic litter on ocean ecosystems, and in particular on the nano- and microplastic fractions that are difficult to observe and may be harmful to marine organisms. Current estimates of ocean plastic concentrations only account for a small fraction of the approximated 8 million tons of plastic litter entering the oceans on an annual basis. Here, we present the distribution of 100–500 μm microplastic particles within the ocean mixed layer, covering a significant fraction of the ocean, in a near-synoptic survey. During The Ocean Race 2017/2018 edition (formerly known as Volvo Ocean Race), two yachts served as ships of opportunity that regularly took samples of microplastics on a regular schedule during their circumnavigation. This effort resulted in information on microplastic distribution along the race track in the ocean’s upper, well-mixed, layer. We found concentrations ranging from 0–349 particles per cubic meter, but with large spatial variability. There was a tendency toward higher concentrations off south-western Europe and in the southwest Pacific, and indications of long-range transport of microplastic with major ocean currents.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Rapid increases in upper 700‐m Indian Ocean heat content (IOHC) since the 2000s have focused attention on its role during the recent global surface warming hiatus. Here, we use ocean model simulations to assess distinct multidecadal IOHC variations since the 1960s and explore the relative contributions from wind stress and buoyancy forcing regionally and with depth. Multidecadal wind forcing counteracted IOHC increases due to buoyancy forcing from the 1960s to the 1990s. Wind and buoyancy forcing contribute positively since the mid‐2000s, accounting for the drastic IOHC change. Distinct timing and structure of upper ocean temperature changes in the eastern and western Indian Ocean are linked to the pathway how multidecadal wind forcing associated with the Interdecadal Pacific Oscillation is transmitted and affects IOHC through local and remote winds. Progressive shoaling of the equatorial thermocline—of importance for low‐frequency variations in Indian Ocean Dipole occurrence—appears to be dominated by multidecadal variations in wind forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: The Atlantic meridional overturning circulation (AMOC) represents the zonally integrated stream function of meridional volume transport in the Atlantic Basin. The AMOC plays an important role in transporting heat meridionally in the climate system. Observations suggest a heat transport by the AMOC of 1.3 PW at 26°N—a latitude which is close to where the Atlantic northward heat transport is thought to reach its maximum. This shapes the climate of the North Atlantic region as we know it today. In recent years there has been significant progress both in our ability to observe the AMOC in nature and to simulate it in numerical models. Most previous modeling investigations of the AMOC and its impact on climate have relied on models with horizontal resolution that does not resolve ocean mesoscale eddies and the dynamics of the Gulf Stream/North Atlantic Current system. As a result of recent increases in computing power, models are now being run that are able to represent mesoscale ocean dynamics and the circulation features that rely on them. The aim of this review is to describe new insights into the AMOC provided by high-resolution models. Furthermore, we will describe how high-resolution model simulations can help resolve outstanding challenges in our understanding of the AMOC.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...