GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Atmospheric science. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (1761 pages)
    Edition: 1st ed.
    ISBN: 9783030521714
    Series Statement: Springer Handbooks Series
    DDC: 551.510287
    Language: English
    Note: Intro -- Foreword -- Preface -- About the Editor -- About the Authors -- Contents -- List of Abbreviations -- List of Symbols -- Part A Basics of Atmospheric Measurement Techniques -- 1 Introduction to Atmospheric Measurements -- 1.1 Measuring Meteorological Elements -- 1.2 History -- 1.3 The Structure of the Atmosphere -- 1.4 Devices, Systems, and Typical Specifications -- 1.5 Applications -- 1.6 Future Developments -- 1.7 Further Reading -- References -- 2 Principles of Measurements -- 2.1 Basics of Measurements -- 2.2 History -- 2.3 Errors in Measurement -- 2.4 Regression Analysis -- 2.5 Time Domain and Frequency Domain for Signals and Systems -- 2.6 Dynamics of Measuring Systems -- 2.7 Analog and Digital Signal Processing -- 2.8 Hardware for Digital Measurement Systems -- 2.9 Further Reading -- References -- 3 Quality Assurance and Control -- 3.1 Principles and Definition -- 3.2 History -- 3.3 Elements of Quality Management -- 3.4 Application -- 3.5 Future Developments -- 3.6 Further Reading -- References -- 4 Standardization in Atmospheric Measurements -- 4.1 Background and Definitions -- 4.2 History -- 4.3 Principles and Procedures -- 4.4 Standardization in the Field of Atmospheric Measurements -- 4.5 Future Developments -- 4.6 Further Reading -- References -- 5 Physical Quantities -- 5.1 Selection of Parameters -- 5.2 History and Thermodynamic Standards -- 5.3 Units and Constants -- 5.4 Parameters of Air, Water Vapor, Water, and Ice -- 5.5 Parameterization of Optical Properties of Clouds -- 5.6 Absorption Coefficients for Water Vapor, Ozone, and Carbon Dioxide -- 5.7 Parameters of Soil -- 5.8 Time and Astronomical Quantities -- 5.9 Tables in Other Chapters -- 5.10 Future Developments -- 5.11 Further Reading -- References -- Part B In situ Measurement Techniques -- 6 Ground-Based Platforms -- 6.1 Principles of Platforms -- 6.2 History. , 6.3 Theory -- 6.4 Platforms and Sensor Installations -- 6.5 Specification -- 6.6 Quality Control and Safety -- 6.7 Maintenance -- 6.8 Applications -- 6.9 Future Developments -- 6.10 Further Readings -- References -- 7 Temperature Sensors -- 7.1 Measurement Principles and Parameters -- 7.2 History -- 7.3 Theory -- 7.4 Devices and Systems -- 7.5 Specifications -- 7.6 Quality Control -- 7.7 Maintenance -- 7.8 Applications -- 7.9 Future Developments -- 7.10 Further Reading -- References -- 8 Humidity Sensors -- 8.1 Measurement Principlesand Parameters -- 8.2 History -- 8.3 Theory -- 8.4 Devices and Systems -- 8.5 Specifications -- 8.6 Quality Control -- 8.7 Maintenance -- 8.8 Application -- 8.9 Future Developments -- 8.10 Further Readings -- References -- 9 Wind Sensors -- 9.1 Measurement Principles and Parameters -- 9.2 History -- 9.3 Theory -- 9.4 Devices and Systems -- 9.5 Specifications -- 9.6 Quality Control -- 9.7 Maintenance -- 9.8 Application -- 9.9 Future Developments -- 9.10 Further Reading -- References -- 10 Pressure Sensors -- 10.1 Measurement Principles and Parameters -- 10.2 History -- 10.3 Theory -- 10.4 Devices and Systems -- 10.5 Specifications -- 10.6 Quality Control -- 10.7 Maintenance -- 10.8 Application -- 10.9 Future Developments -- 10.10 Further Reading -- References -- 11 Radiation Sensors -- 11.1 Measurement Principles and Parameters -- 11.2 History -- 11.3 Theory -- 11.4 Devices and Systems -- 11.5 Specifications -- 11.6 Quality Control -- 11.7 Maintenance -- 11.8 Applications -- 11.9 Future Developments -- 11.10 Further Reading -- References -- 12 In-situ Precipitation Measurements -- 12.1 Measurement Principles and Parameters -- 12.2 History -- 12.3 Theory -- 12.4 Devices and Systems -- 12.5 Specifications -- 12.6 Quality Control, Uncertainty, and Calibration -- 12.7 Maintenance -- 12.8 Application -- 12.9 Future Developments. , 12.10 Further Reading -- References -- 13 Visibility Sensors -- 13.1 Measurement Principles and Parameters -- 13.2 History -- 13.3 Theory -- 13.4 Devices and Systems -- 13.5 Specifications -- 13.6 Quality Control -- 13.7 Maintenance -- 13.8 Application -- 13.9 Future Developments -- 13.10 Further Reading -- References -- 14 Electricity Measurements -- 14.1 Measurement Principles and Parameters -- 14.2 History -- 14.3 Theory -- 14.4 Devices and Systems -- 14.5 Specifications -- 14.6 Quality Control -- 14.7 Maintenance -- 14.8 Applications -- 14.9 Future Developments -- 14.10 Further Reading -- References -- 15 Radioactivity Sensors -- 15.1 Measurement Principles and Parameters -- 15.2 History -- 15.3 Theory -- 15.4 Devices and Systems -- 15.5 Specifications -- 15.6 Quality Control -- 15.7 Maintenance -- 15.8 Application -- 15.9 Future Developments -- 15.10 Further Reading -- References -- 16 Gas Analysers and Laser Techniques -- 16.1 Measurement Principles and Parameters -- 16.2 History -- 16.3 Theory -- 16.4 Devices and Systems -- 16.5 Specifications -- 16.6 Quality Control -- 16.7 Maintenance -- 16.8 Applications -- 16.9 Future Developments -- 16.10 Further Reading -- References -- 17 Measurement of Stable Isotopes in Carbon Dioxide, Methane, and Water Vapor -- 17.1 Measurement Principles and Parameters -- 17.2 History of Stable Isotope Measurements in Atmospheric CO2, CH4 and H2O -- 17.3 Theory -- 17.4 Devices and Systems -- 17.5 Specifications -- 17.6 Quality Control -- 17.7 Maintenance -- 17.8 Application -- 17.9 Future Developments -- 17.10 Further Readings -- References -- 18 Measurement of Fundamental Aerosol Physical Properties -- 18.1 Measurement Principles and Parameters -- 18.2 History -- 18.3 Theory -- 18.4 Devices and Systems -- 18.5 Specifications -- 18.6 Quality Control -- 18.7 Maintenance -- 18.8 Application. , 18.9 Future Developments -- 18.10 Further Reading -- References -- 19 Methods of Sampling Trace Substances in Air -- 19.1 Measurement Principles and Parameters -- 19.2 History -- 19.3 Theory -- 19.4 Devices and Systems -- 19.5 Specifications -- 19.6 Quality Control -- 19.7 Maintenance -- 19.8 Application -- 19.9 Future Developments -- 19.10 Further Reading -- References -- 20 Optical Fiber-Based Distributed Sensing Methods -- 20.1 Measurement Principles and Parameters -- 20.2 History -- 20.3 Theory -- 20.4 Devices -- 20.5 Specifications -- 20.6 Quality Control -- 20.7 Maintenance -- 20.8 Applications -- 20.9 Future Developments -- 20.10 Further Reading -- References -- 21 Odor Measurements -- 21.1 Measurement Principles and Parameters -- 21.2 History -- 21.3 Theory -- 21.4 Devices and Systems -- 21.5 Specifications -- 21.6 Quality Control -- 21.7 Maintenance -- 21.8 Application -- 21.9 Future Developments -- 21.10 Further Readings -- References -- 22 Visual Observations -- 22.1 Principles of Visual Observations -- 22.2 History -- 22.3 Theory -- 22.4 Observed Parameters -- 22.5 Quality Control -- 22.6 Application- -- 22.7 Future Developments -- 22.8 Further Readings -- References -- Part C Remote-Sensing Techniques (Ground-Based) -- 23 Sodar and RASS -- 23.1 Measurement Principles and Parameters -- 23.2 History -- 23.3 Theory -- 23.4 Devices and Systems -- 23.5 Specifications -- 23.6 Quality Control -- 23.7 Maintenance -- 23.8 Applications -- 23.9 Future Developments -- 23.10 Further Reading -- References -- 24 Backscatter Lidar for Aerosol and Cloud Profiling -- 24.1 Measurement Prinziples and Parameters -- 24.2 History -- 24.3 Theory -- 24.4 Devices and Systems -- 24.5 Specifications -- 24.6 Quality Control -- 24.7 Maintenance -- 24.8 Applications -- 24.9 Further Reading -- References -- 25 Raman Lidar for Water-Vapor and Temperature Profiling. , 25.1 Measurement Principles and Parameters -- 25.2 History -- 25.3 Theory -- 25.4 Devices and Systems -- 25.5 Specifications -- 25.6 Quality Control -- 25.7 Maintenance -- 25.8 Applications -- 25.9 Future Developments -- 25.10 Further Reading-2 -- References -- 26 Water Vapor Differential Absorption Lidar -- 26.1 Measurement Principles and Parameters -- 26.2 History -- 26.3 Theory -- 26.4 Devices and Systems -- 26.5 Specifications -- 26.6 Quality Control -- 26.7 Maintenance -- 26.8 Applications -- 26.9 Future Developments -- 26.10 Further Readings -- References -- 27 Doppler Wind Lidar -- 27.1 Measurement Principles and Parameters -- 27.2 History -- 27.3 Theory -- 27.4 Devices and Systems -- 27.5 Specifications -- 27.6 Quality Control -- 27.7 Maintenance -- 27.8 Applications -- 27.9 Future Developments -- 27.10 Further Readings -- References -- 28 Spectrometers -- 28.1 Measurement Principles and Parameters -- 28.2 History -- 28.3 Theory -- 28.4 Devices and Systems -- 28.5 Specifications -- 28.6 Quality Control -- 28.7 Maintenance -- 28.8 Applications -- 28.9 Future Developments -- 28.10 Further Readings -- References -- 29 Passive Solar and Microwave Spectral Radiometers -- 29.1 Measurement Principles and Parameters -- 29.2 History -- 29.3 Theory -- 29.4 Devices and Systems -- 29.5 Specifications -- 29.6 Quality Control -- 29.7 Maintenance -- 29.8 Application -- 29.9 Future Developments -- 29.10 Further Readings -- References -- 30 Weather Radar -- 30.1 Measurement Principles and Parameters -- 30.2 History -- 30.3 Theory -- 30.4 Radar Systems -- 30.5 Specifications -- 30.6 Quality Control -- 30.7 Maintenance -- 30.8 Applications -- 30.9 Future Developments -- 30.10 Further Reading -- References -- 31 Radar Wind Profiler -- 31.1 Measurement Principles and Parameters -- 31.2 History -- 31.3 Theory -- 31.4 Systems -- 31.5 Specifications. , 31.6 Quality Control.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg
    Keywords: Physical geography ; Meteorology ; Geography ; Weights and measures ; Climatic changes ; Ecology ; Messtechnik ; Meteorologie ; Mikroklimatologie ; Angewandte Meteorologie ; Mikrometeorologie
    Description / Table of Contents: Gegenstand dieses Buches sind die atmosphärischen Vorgänge im unmittelbaren Lebensraum des Menschen, also in den unteren 100-1000 Metern der Atmosphäre und in Gebieten mit nur einigen Kilometern Ausdehnung. Die zweite Auflage wurde an die Entwicklungen der letzten Jahre angepasst und teilweise durch neuere Forschungsergebnisse erweitert. Damit bietet das Buch Grundlagen insbesondere für angewandte meteorologische Fachgebiete wie Biometeorologie, Agrarmeteorologie, Hydrometeorologie, Umweltmeteorologie und technische Meteorologie sowie für die Biogeochemie mit ausgewählten Beispielen aus diesen Gebieten. Ein wichtiger Schwerpunkt sind dabei die Transportprozesse und Stoffflüsse zwischen Atmosphäre und Erdoberfläche, wobei bewachsene und heterogene Unterlagen eine besondere Beachtung finden. Der Autor behandelt die Teilgebiete Theorie, Messtechnik, experimentelle Verfahren und Modellierung so, dass sie jeweils auch eigenständig für Lehre, Forschung und Praxis genutzt werden können.
    Type of Medium: Online Resource
    Pages: Online-Ressource , v.: digital
    Edition: Zweite, überarbeitete und erweiterte Auflage
    ISBN: 9783540382041
    DDC: 550
    RVK:
    RVK:
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Atmospheric sciences. ; Meteorology. ; Air pollution. ; Remote sensing. ; Physical measurements. ; Measurement . ; Ecosystems. ; Atmosphäre ; Meteorologische Beobachtung ; Messgerät ; Messung ; Fernerkundung ; In situ ; Meteorologie ; Wetter ; Wettervorhersage ; Sensor ; Methode
    Description / Table of Contents: Basics of Atmospheric Measurement Techniques -- In-situ Measurement Techniques -- Remote Sensing Techniques (Ground-Based) -- Remote Sensing Techniques (Space- and Aircraft-Based) -- Complex Measurements - Methods and Applications -- Measurements Networks.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(LVIII, 1748 p. 752 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030521714
    Series Statement: Springer Handbooks
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Earth sciences. ; Atmospheric science. ; Climatology.
    Description / Table of Contents: Chapter 1: General Basics -- Chapter 2: Basic Equations of Atmospheric Turbulence -- Chapter 3: Specifics of the Near-Surface Turbulence -- Chapter 4: Experimental Methods for Estimating the Fluxes of Energy and Matter -- Chapter 5: Modelling of the Energy and Matter Exchange -- Chapter 6: Measurement Technique -- Chapter 7: Microclimatology -- Chapter 8: Applied Meteorology. .
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XXI, 410 p. 121 illus., 6 illus. in color.)
    Edition: 3rd ed. 2024.
    ISBN: 9783031475269
    Series Statement: Springer Atmospheric Sciences
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-23
    Description: The differences between one classical and three state-of-the-art formulations of the mass density of humid air were quantified. Here, we present both the calculi for direct determination of the humid-air mass density employing the virial form of the thermodynamic equation of state, and a sufficiently accurate look-up-table for the quick-look determination of the humid-air mass density, which is based on the advanced Thermodynamic Equation of Seawater 2010.
    Description: Leibniz-Institut für Troposphärenforschung e.V. (3489)
    Keywords: ddc:551.5 ; Mass density ; Humid air ; Real-gas effects ; TEOS-10
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-04-13
    Description: An eddy-covariance system was installed in a young Maritime Pine plantation in Central Portugal immediately after a wildfire that occurred on 13 August 2017, and has been monitoring CO2 fluxes from the 43th post-fire day onwards. The data set comprises the daily sums of the 30-min NEE, Reco and GPP fluxes, with 90 % of the NEE fluxes having been computed directly from the measurements and the Reco and GPP fluxes have been estimated based on the Lloyd-Taylor and Michaelis-Menten functions.
    Keywords: BIO; Biology; carbon dioxide; Carbon dioxide assimilation rate; CentPortugal_pine; DATE/TIME; Eddy-covariance; eddy-covariance system; estimated based on the Lloyd-Taylor and Michaelis-Menten functions; Mediterranean woodland; Net ecosystem exchange of carbon dioxide; ORDINAL NUMBER; Pinus pinaster Ait.; Portugal; Respiration rate, carbon dioxide; wildfire
    Type: Dataset
    Format: text/tab-separated-values, 1110 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-05-07
    Description: CO2 release from thawing permafrost is both a consequence of, and a driver for, global warming, making accurate information on the Arctic carbon cycle essential for climate predictions. Eddy covariance data obtained from Bayelva (Svalbard) in 2015, using well‐established processing and quality control techniques, indicate that most of the annual net CO2 uptake is due to high CO2 flux events in winter that are associated with strong winds and probably relate to technical limitations of the gas analyzer. Emission events may relate to either (unidentified) instrumental limitations or to physical processes such as CO2 advection. Excluding the high winter uptake events yields an annual CO2 budget close to zero; whether or not these events are included can, therefore, have a considerable effect on carbon budget calculations. Further investigation will be crucial to pinpoint the factors causing these high CO2 flux events and to derive scientifically substantiated flux processing standards.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Atmospheric Measurement Techniques, COPERNICUS GESELLSCHAFT MBH, 14(11), pp. 7291-7296, ISSN: 1867-1381
    Publication Date: 2024-05-07
    Description: The WPL (Webb, Pearman, and Leuning) correction is fully accepted to correct trace gas fluxes like CO2 for density fluctuations due to water vapour and temperature fluctuations for open-path gas analysers. It is known that this additive correction can be on the order of magnitude of the actual flux. However, this is hardly ever included in the analysis of data quality. An example from the Arctic shows the problems, because the size of the correction is a multiple of the actual flux. As a general result, we examined and tabulated the magnitude of the WPL correction for carbon dioxide flux as a function of sensible and latent heat flux. Furthermore, we propose a parameter to better estimate possible deficits in data quality and recommend integrating the quality flag derived with this parameter into the general study of small carbon dioxide fluxes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...