GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (4)
  • 2015-2019  (13)
Document type
Keywords
Years
Year
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hennon, Gwenn M M; Williamson, Olivia M; Hernández Limón, María D; Haley, Sheean T; Dyhrman, Sonya T (2019): Non-linear Physiology and Gene Expression Responses of Harmful Alga Heterosigma akashiwo to Rising CO2. Protist, 170(1), 38-51, https://doi.org/10.1016/j.protis.2018.10.002
    Publication Date: 2024-05-22
    Description: Heterosigma akashiwo is a raphidophyte known for forming ichthyotoxic blooms. In order to predict the potential impacts of rising CO2 on H. akashiwo it is necessary to understand the factors influencing growth rates over a range of CO2 concentrations. Here we examined the physiology and gene expression response of H. akashiwo to concentrations from 200 to 1000 ppm CO2. Growth rate data were combined from this and previous studies and fit with a CO2 limitation-inhibition model that revealed an apparent growth optimum around 600–800 ppm CO2. Physiological changes included a significant increase in C:N ratio at 800 ppm CO2 and a significant decrease in hydrogen peroxide concentration at 1000 ppm. Whole transcriptome sequencing of H. akashiwo revealed sharp distinctions in metabolic pathway gene expression between 600 and 800 ppm CO2. Hierarchical clustering by co-expression identified groups of genes with significant correlations to CO2 and growth rate. Genes with significant differential expression with CO2 included carbon concentrating mechanism genes such as beta-carbonic anhydrases and a bicarbonate transporter, which may underpin shifts in physiology. Genes involved in cell motility were significantly changed by both elevated CO2 and growth rate, suggesting that future ocean conditions could modify swimming behavior in this species.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon/Nitrogen ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon per cell; Carbon per cell, standard deviation; Cell density; Cell density, standard deviation; Chlorophyll a; Chlorophyll a per cell; Chromista; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Heterosigma akashiwo; Hydrogen peroxide; Hydrogen peroxide per cell; Identification; Laboratory experiment; Laboratory strains; Nitrogen per cell; Nitrogen per cell, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Phosphate; Phytoplankton; Potentiometric titration; Primary production/Photosynthesis; Primary production of carbon per chlorophyll a; Registration number of species; Salinity; Sample ID; Single species; Species; Spectrophotometric; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 611 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The photosynthetic and diazotrophic cyanobacterium Trichodesmium is a key contributor to marine biogeochemical cycles in the subtropical-oligotrophic oceans. Trichodesmium form colonies that harbor a distinct microbial community in comparison to the surrounding seawater. The presence of their associated bacteria can expand Trichodesmium ’s functional potential and is predicted to influence the cycling of carbon, nitrogen, phosphorus, and iron (C, N, P, and Fe). To link the bacteria associated with Trichodesmium to key functional traits and elucidate how community structure can influence nutrient cycling, we characterized Red Sea Trichodesmium colonies using metagenomics and metaproteomics. Colonies harbored bacteria that typically associate with algae and particles, such as the ubiquitous Alteromonas macleodii, but also lineages specific to Trichodesmium , such as members from the order Balneolales. The majority of associated bacteria were auxotrophic for different vitamins, indicating their dependency on vitamin production by Trichodesmium . The associated bacteria carry functional traits including siderophore biosynthesis, reduced phosphorus metabolism, and denitrification pathways. The analysis supports Trichodesmium as an active hotspot for C, N, P, Fe, and vitamin exchange. In turn, Trichodesmium may rely on associated bacteria to meet its high Fe demand as several lineages synthesize photolabile siderophores (e.g., vibrioferrin, rhizoferrin, petrobactin) which can enhance the bioavailability of particulate Fe to the entire consortium. Collectively, the results indicate that Trichodesmium colonies provide a structure where these interactions can take place. While further studies are required to clarify the exact nature of these interactions, Trichodesmium ’s reliance on particle and algae-associated bacteria and the observed redundancy of key functional traits likely underpins the resilience of Trichodesmium within an ever-changing global environment. IMPORTANCE Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions. Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Complex assemblages of microbes in the surface ocean are responsible for approximately half of global carbon fixation. The persistence of high taxonomic diversity despite competition for a small suite of relatively homogeneously distributed nutrients, that is, 'the paradox of the plankton', represents a long-standing challenge for ecological theory. Here we find evidence consistent with temporal niche partitioning of nitrogen assimilation processes over a diel cycle in the North Pacific Subtropical Gyre. We jointly analysed transcript abundances, lipids and metabolites and discovered that a small number of diel archetypes can explain pervasive periodic dynamics. Metabolic pathway analysis of identified diel signals revealed asynchronous timing in the transcription of nitrogen uptake and assimilation genes among different microbial groups-cyanobacteria, heterotrophic bacteria and eukaryotes. This temporal niche partitioning of nitrogen uptake emerged despite synchronous transcription of photosynthesis and central carbon metabolism genes and associated macromolecular abundances. Temporal niche partitioning may be a mechanism by which microorganisms in the open ocean mitigate competition for scarce resources, supporting community coexistence.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Sunlight is the most important environmental control on diel fluctuations in phytoplankton activity, and understanding diel microbial processes is essential to the study of oceanic biogeochemical cycles. Yet, little is known about the in situ temporal dynamics of phytoplankton metabolic activities and their coordination across different populations. We investigated diel orchestration of phytoplankton activity in photosynthesis, photoacclimation, and photoprotection by analyzing pigment and quinone distributions in combination with metatranscriptomes in surface waters of the North Pacific Subtropical Gyre (NPSG). We found diel cycles in pigment abundances resulting from the balance of their synthesis and consumption. These dynamics suggest that night represents a metabolic recovery phase, refilling cellular pigment stores, while photosystems are remodeled towards photoprotection during daytime. Transcript levels of genes involved in photosynthesis and pigment metabolism had synchronized diel expression patterns among all taxa, reflecting the driving force light imparts upon photosynthetic organisms in the ocean, while other environmental factors drive niche differentiation. For instance, observed decoupling of diel oscillations in transcripts and related pigments indicates that pigment abundances are modulated by environmental factors extending beyond gene expression/regulation reinforcing the need to combine metatranscriptomics with proteomics and metabolomics to fully understand the timing of these critical processes in situ.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 104 (2015): 72-91, doi:10.1016/j.dsr.2015.06.012.
    Description: Nitrogen fixation is an important yet still incompletely constrained component of the marine nitrogen cycle, particularly in the subsurface. A Video Plankton Recorder (VPR) survey in the subtropical North Atlantic found higher than expected Trichodesmium colony abundances at depth, leading to the hypothesis that deep nitrogen fixation in the North Atlantic may have been previously underestimated. Here, Trichodesmium colony abundances and modeled nitrogen fixation from VPR transects completed on two cruises in the tropical and subtropical North Atlantic in fall 2010 and spring 2011 were used to evaluate that hypothesis. A bio-optical model was developed based on carbon-normalized nitrogen fixation rates measured on those cruises. Estimates of colony abundance and nitrogen fixation were similar in magnitude and vertical and geographical distribution to conventional estimates in a recently compiled climatology. Thus, in the mean, VPR-based estimates of volume-specific nitrogen fixation rates at depth in the tropical North Atlantic were not inconsistent with estimates derived from conventional sampling methods. Based on this analysis, if Trichodesmium nitrogen fixation by colonies is underestimated, it is unlikely that it is due to underestimation of deep abundances by conventional sampling methods.
    Description: We gratefully acknowledge support of this research by NSF and NASA. A NASA Earth and Space Science Fellowship supported E. Olson's graduate studies.
    Keywords: Nitrogen fixation ; Trichodesmium spp. ; North Atlantic ; Video Plankton Recorder
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1145–1164, doi:10.1002/2015GB005141.
    Description: Time-series observations are critical to understand the structure, function, and dynamics of marine ecosystems. The Hawaii Ocean Time-series program has maintained near-monthly sampling at Station ALOHA (22°45′N, 158°00′W) in the oligotrophic North Pacific Subtropical Gyre (NPSG) since 1988 and has identified ecosystem variability over seasonal to interannual timescales. To further extend the temporal resolution of these near-monthly time-series observations, an extensive field campaign was conducted during July–September 2012 at Station ALOHA with near-daily sampling of upper water-column biogeochemistry, phytoplankton abundance, and activity. The resulting data set provided biogeochemical measurements at high temporal resolution and documents two important events at Station ALOHA: (1) a prolonged period of low productivity when net community production in the mixed layer shifted to a net heterotrophic state and (2) detection of a distinct sea-surface salinity minimum feature which was prominent in the upper water column (0–50 m) for a period of approximately 30 days. The shipboard observations during July–September 2012 were supplemented with in situ measurements provided by Seagliders, profiling floats, and remote satellite observations that together revealed the extent of the low productivity and the sea-surface salinity minimum feature in the NPSG.
    Description: NOAA Climate Observation Division; National Science Foundation (NSF) Center for Microbial Oceanography: Research and Education (C-MORE) Grant Numbers: EF0424599, OCE-1153656, OCE-1260164; Gordon and Betty Moore Foundation Marine Microbiology Investigator
    Description: 2016-02-13
    Keywords: Primary productivity ; Microbial ecology ; Station ALOHA ; Temporal variability ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 61 (2016): 1172–1187, doi:10.1002/lno.10253.
    Description: The composition of sinking particles and the mechanisms leading to their transport ultimately control how much carbon is naturally sequestered in the deep ocean by the “biological pump.” While detrital particles often contain much of the sinking carbon, sinking of intact phytoplankton cells can also contribute to carbon export, which represents a direct flux of carbon from the atmosphere to the deep ocean by circumventing the surface ocean food web. Phytoplankton that contributed to carbon flux were identified in sinking material collected by short-term sediment trap deployments conducted along a transect off the eastern shore of South America. Particulate organic carbon flux at 125 m depth did not change significantly along the transect. Instead, changes occurred in the composition and association of phytoplankton with detrital particles. The fluxes of diatoms, coccolithophores, dinoflagellates, and nano-sized cells at 125 m were unrelated to the overlying surface population abundances, indicating that functional-group specific transport mechanisms were variable across locations. The dominant export mechanism of phytoplankton at each station was putatively identified by principal component analysis and fell into one of three categories; (1) transport and sinking of individual, viable diatom cells, (2) transport by aggregates and fecal pellets, or (3) enhanced export of coccolithophores through direct settling and/or aggregation
    Description: Funding for the DeepDOM cruise was provided by the National Science Foundation (NSF) grant OCE-1154320 to E. B. Kujawinski and K. Longnecker, WHOI. Partial research support was provided by NSF through grants OCE-0925284, and OCE-1316036 to S.T. Dyhrman. C.A. Durkin was supported by a Woods Hole Oceanographic Institution Devonshire Postdoctoral Scholarship.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2015. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 61 (2016): 227–239, doi:10.1002/lno.10206.
    Description: Polyphosphate (polyP) was examined within the upper water column (≤ 150 m) of Station ALOHA (22° 45′N, 158° 00′W) during two cruises conducted in May–June 2013 and September 2013. Phosphorus molar ratios of particulate polyP to total particulate phosphorus (TPP) were relatively low, similar to previously reported values from the temperate western North Atlantic, and did not exhibit strong vertical gradients, reflecting a lack of polyP recycling relative to other forms of TPP with depth. Furthermore, relationships among polyP:TPP, soluble reactive phosphorus (SRP), and alkaline phosphatase activity (APA) were also consistent with previous observations from the Atlantic Ocean. To ascertain potential mechanisms of biological polyP production and utilization, surface seawater was incubated following nutrient additions. Results were consistent with polyP:TPP enrichment under opposite extremes of APA, suggesting diverse polyP accumulation/retention mechanisms. Addition of exogenous polyP (45 ± 5 P atoms) to field incubations did not increase chlorophyll content relative to controls, suggesting that polyP was not bioavailable to phytoplankton at Station ALOHA. To clarify this result, phytoplankton cultures were screened for the ability to utilize exogenous polyP. PolyP bioavailability was variable among model diatoms of the genus Thalassiosira, yet chain length did not influence polyP bioavailability. Thus, microbial community composition may influence polyP dynamics in the ocean, and vice versa.
    Description: This work was supported by a Postdoctoral Fellowship from the Ford Foundation (JMD), the National Science Foundation under grants OCE 1225801 (JMD), OCE 1316036 (STD), EF 04-24599 (DMK), the Woods Hole Oceanographic Coastal Ocean Institute, the Center for Microbial Oceanography: Research and Education, and the Gordon and Betty Moore Foundation (DMK). Additional support was provided by grants from the Simons Foundation to DMK and STD.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wurch, L. L., Alexander, H., Frischkorn, K. R., Haley, S. T., Gobler, C. J., & Dyhrman, S. T. Transcriptional shifts highlight the role of nutrients in harmful brown tide dynamics. Frontiers in Microbiology, 10, (2019):136, doi:10.3389/fmicb.2019.00136.
    Description: Harmful algal blooms (HABs) threaten ecosystems and human health worldwide. Controlling nitrogen inputs to coastal waters is a common HAB management strategy, as nutrient concentrations often suggest coastal blooms are nitrogen-limited. However, defining best nutrient management practices is a long-standing challenge: in part, because of difficulties in directly tracking the nutritional physiology of harmful species in mixed communities. Using metatranscriptome sequencing and incubation experiments, we addressed this challenge by assaying the in situ physiological ecology of the ecosystem destructive alga, Aureococcus anophagefferens. Here we show that gene markers of phosphorus deficiency were expressed in situ, and modulated by the enrichment of phosphorus, which was consistent with the observed growth rate responses. These data demonstrate the importance of phosphorus in controlling brown-tide dynamics, suggesting that phosphorus, in addition to nitrogen, should be evaluated in the management and mitigation of these blooms. Given that nutrient concentrations alone were suggestive of a nitrogen-limited ecosystem, this study underscores the value of directly assaying harmful algae in situ for the development of management strategies.
    Description: This research was funded by NOAA Grant NA15NOS4780199 (SD), NA09NOA4780206 (SD and CG), and NA15NOS4780183 (CG) through the ECOHAB Program, publication number ECO929. Partial support was also provided by the World Surf League through the Columbia Center for Climate and Life, the Woods Hole Oceanographic Institution Coastal Ocean Institute, and the Link Foundation. Kyle Frischkorn was funded under a National Science Foundation Graduate Research Fellowship.
    Keywords: harmful algal bloom ; Aureococcus anophagefferens ; brown tide ; nutrient physiology ; metatranscriptomics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 5761-5778, doi:10.5194/bg-15-5761-2018.
    Description: N2 fixation by the genus Trichodesmium is predicted to support a large proportion of the primary productivity across the oligotrophic oceans, regions that are considered among the largest biomes on Earth. Many of these environments remain poorly sampled, limiting our understanding of Trichodesmium physiological ecology in these critical oligotrophic regions. Trichodesmium colonies, communities that consist of the Trichodesmium host and their associated microbiome, were collected across the oligotrophic western tropical South Pacific (WTSP). These samples were used to assess host clade distribution, host and microbiome metabolic potential, and functional gene expression, with a focus on identifying Trichodesmium physiological ecology in this region. Genes sets related to phosphorus, iron, and phosphorus–iron co-limitation were dynamically expressed across the WTSP transect, suggestive of the importance of these resources in driving Trichodesmium physiological ecology in this region. A gene cassette for phosphonate biosynthesis was detected in Trichodesmium, the expression of which co-varied with the abundance of Trichodesmium Clade III, which was unusually abundant relative to Clade I in this environment. Coincident with the expression of the gene cassette, phosphate reduction to phosphite and low-molecular-weight phosphonate compounds was measured in Trichodesmium colonies. The expression of genes that enable use of such reduced-phosphorus compounds were also measured in both Trichodesmium and the microbiome. Overall, these results highlight physiological strategies employed by consortia in an undersampled region of the oligotrophic WTSP and reveal the molecular mechanisms underlying previously observed high rates of phosphorus reduction in Trichodesmium colonies.
    Description: Grants from the National Science Foundation to STD (OCE-1332912) and BASVM (OCE-1536346 and OCE-1332898) supported this research. KRF is partially supported by a National Science Foundation Graduate Research Fellowship (DGE-16-44869). This research was also funded by the Simons Foundation’s Simons Collaboration on Ocean Processes and Ecology (SCOPE) (SCOPE award ID 329108 to STD and BVM).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...