GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (15)
Document type
Language
Years
Year
  • 1
    Publication Date: 2022-04-14
    Description: The permeability characteristics of natural fracture systems are crucial to the production potential of shale gas wells. To investigate the permeability behavior of a regional fault that is located within the Wufeng Formation, China, the gas permeability of shale samples with natural micro-fractures was measured at different confining pressures and complemented with helium pycnometry for porosity, computed micro-tomographic (µCT) imaging, and a comparison with well testing data. The cores originated from a shale gas well (HD-1) drilled at the Huayingshan anticline in the eastern Sichuan Basin. The measured Klinkenberg permeabilities are in the range between 0.059 and 5.9 mD, which roughly agrees with the permeability of the regional fault (0.96 mD) as estimated from well HD-1 productivity data. An extrapolation of the measured permeability to reservoir pressures in combination with the µCT images shows that the stress sensitivity of the permeability is closely correlated to the micro-fracture distribution and orientation. Here, the permeability of the samples in which the micro-fractures are predominantly oriented along the flow direction is the least stress sensitive. This implies that tectonic zones with a large fluid potential gradient can define favorable areas for shale gas exploitation, potentially even without requirements for hydraulic fracture treatments.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-07-07
    Description: The spatial and angular emission patterns of artificial and natural light emitted, scattered, and reflected from the Earth at night are far more complex than those for scattered and reflected solar radiation during daytime. In this commentary, we use examples to show that there is additional information contained in the angular distribution of emitted light. We argue that this information could be used to improve existing remote sensing retrievals based on night lights, and in some cases could make entirely new remote sensing analyses possible. This work will be challenging, so we hope this article will encourage researchers and funding agencies to pursue further study of how multi-angle views can be analyzed or acquired.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-02-07
    Description: The terrestrial and celestial reference frames (TRF and CRF) linked by the Earth Orientation Parameters (EOP) serve as the foundation in geodesy. The reference frames and EOP are determined by combining four space geodetic techniques, including Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), and DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite). Currently the combination is performed either on the parameter or on the normal equation level. In contrast, a combination on the observation level allows fully consistent modeling and parameterization, and thus provides the TRF, CRF, and EOP with the highest consistency, precision, and reliability. In this study, we present preliminary results of the multi-technique integrated processing, including GNSS, VLBI, and SLR, using the upgraded Positioning And Navigation Data Analyst (PANDA) software which can process the three techniques in combination on the observation level. We investigate the impact of global ties, that is, EOP, local ties, and tropospheric ties, with the focus on handling the systematic tie biases automatically. We demonstrate the contributions of the different techniques on the reference frames and EOP. The integrated solution is dominated by the huge number of globally distributed GNSS observations. The VLBI observations contribute to the determination of the full set of EOP and the TRF network scale parameter, whereas the SLR observations contribute to the determination of the network scale and the geocenter. By combining the three techniques, the results outperform any single-technique solution in terms of precision and reliability.
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-11-15
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-18
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-12-05
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-11-28
    Description: Very Long Baseline Interferometry (VLBI) intensive (INT) sessions are critical for the rapid determination and densification of Universal Time 1-Coordinate Universal Time (UT1-UTC), which plays an important role in satellite geodesy and space exploration missions and is not predictable over longer time scales. Due to the limited observation geometry of INT sessions with two to three stations observing about 1 hr, tropospheric gradients cannot be estimated, which degrades the UT1-UTC precision. We investigate the impact of tropospheric ties at Global Navigation Satellite Systems (GNSSs) and VLBI co-located stations in INT sessions from 2001 to 2021. VLBI and GNSS observations are combined on the observation level. The results are evaluated by using both UT1-UTC and Length of Day (LOD) from consecutive sessions. We demonstrate a better agreement of 10%–30% when comparing the derived LOD to GNSS LOD for INT1, INT2, and VGOS-2 sessions; whereas, the agreement is not improved when directly comparing UT1-UTC to the IERS Earth Orientation Parameters (EOPs) product, potentially because INT sessions also contribute to IERS EOP products. The major impact comes from tropospheric gradient ties, whereas applying zenith delay ties does not improve or even deteriorate UT1-UTC agreement. Gradient ties also introduce systematic biases in UT1-UTC by around −3 to −5 μs, except for the Russian INT sessions. Regression analysis shows that the east gradient introduces systematic effects in UT1-UTC for sessions involving Germany and USA (Hawaii), whereas for Germany–Japan and Russian sessions, the north gradient also contributes systematically.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-12-12
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-12-12
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    In:  Scientific Technical Report STR
    Publication Date: 2022-01-11
    Description: The Global Geodetic Reference Frame (GGRF) plays a fundamental role in geodesy and related Positioning, Navigation, and Timing applications, and allows to quantify the Earth’s change in space and time. The ITRF and ICRF are the two most important components to realize GGRF, while the determination of these two reference frames relies on the combination of several space geodetic techniques, mainly, VLBI, SLR, GNSS, and DORIS. The combination is currently done on either the parameter level, or the normal equation level. However, the combination on the observation level, or the so-called integrated processing of multi-technique on the observation level, provides the results of best consistency, robustness, and accuracy. This thesis focuses on the investigation of the integrated processing of GNSS and VLBI on the observation level. The benefits of integrated processing are demonstrated in terms of TRF, CRF, and EOP, while the impact of global ties (EOP), tropospheric ties, and local ties are underlined. Several issues in integrated processing are addressed, including the systematic bias in ties (for instance, LOD and tropospheric ties), the relative weighting. An automatic reweighting strategy based on the normalized residuals is developed, which can properly handle the uncertainty of the ties without losing too much constraint. A software with state-of-the-art modules is the prerequisite to perform integrated processing. Based on the GNSS data processing software: Positioning And Navigation Data Analyst (PANDA), the VLBI and SLR modules are implemented in the common least-squares estimator. Therefore, the best consistency can be guaranteed. The software capability is demonstrated with the single-technique solutions. The station coordinate precision is at millimeter level for both GNSS and VLBI, while the EOP estimates are comparable to other Analysis Centers and the IERS products. It is also demonstrated that the SLR station coordinate precision is improved by 20% to 30% with additional GLONASS and GRACE satellites to contributing to the LAGEOS and ETALON constellation. Focusing on the tropospheric ties in GNSS and VLBI integrated processing, its contribution is demonstrated for the first time comprehensively. Applying tropospheric ties improves the VLBI station coordinate precision by 12% on the horizontal components and up to 30% on the vertical component. The network scale repeatability is reduced by up to 33%. The EOP estimates are also improved significantly, for instance, 10% to 30% for polar motion, and up to 10% for other components. Furthermore, applying the gradient ties in the VLBI intensive sessions reduces the systematic bias in UT1-UTC estimates. The consistent TRF, CRF, and EOP are achieved in the integrated VLBI and GNSS solution. Applying the global ties, tropospheric ties, and local ties stables the reference frame. The ERP estimates in the integrated solution are dominated by the GNSS technique, and the VLBI technique introduces additional 10% improvement on the y-pole component in terms of the day-boundary-discontinuity. The UT1-UTC and celestial pole offsets are also slightly improved in the integrated solution. It is also demonstrated that applying the LTs inappropriately distorts the network and introduces systematic biases to the ERP estimates, addressing the necessity of updating the local surveys. Moreover, the coordinates of AGN are also enhanced by up to 20% in the integrated solutions, especially the southern ones. This study reveals the importance of integrated processing of multi-technique on the observation level, as the best consistency can be achieved, and the applied ties improve the solutions significantly. It is strongly recommended that for the future realization of celestial and terrestrial reference frames, the concept of integrated processing on the observation level should be implemented, and all the possible ties should be applied, including the global ties (EOP), local ties, space ties, and tropospheric ties. Such kind of integrated solution of all the four techniques can provide robust estimates of the reference frames and EOP, with the advantage of each technique exploited to its full extend.
    Description: Der Globale Geodätische Referenzrahmen (Global Geodetic Reference Frame, GGRF) spielt eine fundamentale Rolle in der Geodäsie und den damit verbundenen Positionierungs-, Navigations- und Zeitmessungsanwendungen (Positioning, Navigation, and Timing, PNT) und ermöglicht die Quantifizierung der Veränderung der Erde in Raum und Zeit. Der ITRF und der ICRF sind die beiden wichtigsten Komponenten zur Realisierung des GGRF, wobei die Bestimmung dieser beiden Referenzrahmen auf der Kombination verschiedener raumgeodätischer Techniken beruht, hauptsächlich VLBI, SLR, GNSS und DORIS. Die Kombination wird derzeit entweder auf der Parameterebene oder auf der Normalgleichungsebene durchgeführt. Die Kombination auf der Beobachtungsebene oder die sogenannte integrierte Daten-Verarbeitung von Multi-Techniken auf der Beobachtungsebene, bietet jedoch eine Lösung mit der besten Konsistenz, Robustheit und Genauigkeit. Diese Arbeit konzentriert sich auf die Untersuchung der integrierten Daten-Verarbeitung von GNSS und VLBI auf der Beobachtungsebene. Die Vorteile der integrierten Lösung werden in Bezug auf TRF, CRF, und EOP aufgezeigt, während die Auswirkungen von „Global Ties (EOP), Tropospheric Ties, and Local Ties“ hervorgehoben werden. Einige Punkte der integrierten Verarbeitung werden in dieser Arbeit untersucht, einschließlich der systematischen Abweichungen von „Ties“ (z.B. LOD und Tropospheric Ties), der relativen Gewichtung usw. Anhand der normalisierten Residuen wird eine automatische Umgewichtungsstrategie entwickelt, mit der die Unsicherheit der „Ties“ angemessen behandelt werden kann, ohne dass zu viel Einschränkung dabei verloren geht. Eine Software mit modernsten Modulen ist die Voraussetzung für die integrierte Daten Verarbeitung. Basierend auf der GNSS-Datenverarbeitungssoftware Paket: Positioning And Navigation Data Analyst (PANDA) werden die Module VLBI und SLR in demselben Least-Squares-Estimator wie GNSS implementiert, damit kann man die beste Konsistenz in der Datenverarbeitung erreichen. In dieser Arbeit wird die Leistungsfähigkeit der Software mit den Ein-Technik-Lösungen demonstriert. Die Genauigkeit der Stationskoordinaten liegt sowohl für GNSS als auch für VLBI im Millimeterbereich, und die geschätzten EOP-Parameter sind auch mit der anderer Analysezentren und den IERS-Produkten vergleichbar. Es wird auch gezeigt, dass die Koordinatengenauigkeit der SLR-Station um 20-30% verbessert wird, wenn zusätzliche GLONASS- und GRACE-Satelliten zur LAGEOS und ETALON-Konstellation beitragen. Mit dem Schwerpunkt auf den „Tropospheric Ties“ in der integrierten GNSS- und VLBI- Daten Verarbeitung wird ihr Beitrag zum ersten Mal umfassend dargestellt. Die Anwendung der „Tropospheric Ties“ verbessert die Genauigkeit der VLBI-Koordinaten um 12% bei der horizontalen Komponente und bis zu 30% bei der vertikalen Komponente. Die Genauigkeit im Netzwerkmaßstab wird um bis zu 33% verbessert. Auch die EOP-Bestimmungen werden deutlich verbessert, z.B. um 10-30% bei polaren Bewegungen und bis zu 10% bei anderen Komponenten. Darüber hinaus reduziert die Einführung der „Gradient Ties“ in der VLBI-Intensivsession die systematische Abweichung in den dUT1-Bestimmungen. Die konsistente TRF, CRF, und EOP werden bei der integrierten VLBI- und GNSS-Lösung erreicht. Die Anwendung der „Global Ties, Tropospheric Ties and Local Ties“ stabilisiert die Bestimmungen des Referenzrahmens. Die ERP-Bestimmungen in der integrierten Lösung werden von der GNSS-Technik dominiert, und die VLBI-Technik bringt eine zusätzliche Verbesserung um 10% auf die Tagesgrenzen-Diskontinuität (day-boundary-discontinuity, DBD) für die y-Pol-Komponente. Die dUT1- und CPO werden in der integrierten Lösung ebenfalls leicht verbessert. Es wird auch gezeigt, dass eine ungeeignete Anwendung der LTs das Netzwerk verzerrt und systematische Abweichungen in die ERP-Bestimmungen einführt, wodurch die Notwendigkeit einer Aktualisierung der lokalen Tie Messungen deutlich wird. Darüber hinaus werden die Koordinaten der AGN in den integrierten Lösungen um bis zu 20% verbessert, insbesondere im Süden. Diese Arbeit zeigt die Bedeutung der integrierten Daten Verarbeitung von Multi-Technik auf der Beobachtungsebene, da die beste Konsistenz erreicht werden kann und die angewandten „Ties“ die Lösungen erheblich verbessern. Es wird nachdrücklich empfohlen, für die zukünftige Realisierung von himmelsfesten und erdfesten Referenzrahmen das Konzept der integrierten Verarbeitung auf Beobachtungsebene durchzuführen und alle möglichen „Ties“ anzuwenden, einschließlich der „Global Ties (EOP), Local Ties, Space Ties, and Tropospheric Ties“. Eine solche integrierte Lösung aller vier Techniken kann die robusten Bestimmungen der Referenzrahmen und der EOP liefern, wobei die Vorteile jeder Technik voll ausgeschöpft werden.
    Language: English
    Type: info:eu-repo/semantics/doctoralThesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...