GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Coral settlement
    Description: Brooding coral Porites astreoides colonies were collected on St. John, U.S. Virgin Islands on June 22nd, 2017 and used in an in-situ larval coral settlement experiment. Settlement counts were taken on June 28th, 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/742565
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1536782
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Silva, T. L., Mooney, T. A., Sayigh, L. S., & Baumgartner, M. F. Temporal and spatial distributions of delphinid species in Massachusetts Bay (USA) using passive acoustics from ocean gliders. Marine Ecology Progress Series, 631, (2019): 1-17, doi:10.3354/meps13180.
    Description: Knowledge about marine mammal habitat use is necessary for informing ecosystem-based management and mitigating human impacts. Massachusetts Bay is an important marine mammal foraging area in the Gulf of Maine and an area of substantial human activity, but delphinid habitat use is poorly understood. The goals of this work were to (1) document temporal and spatial occurrence of delphinid species in Massachusetts Bay using passive acoustic monitoring from ocean gliders and (2) explore the potential influences of environmental conditions on delphinid distributions. Gliders were deployed in late fall and early winter of 2014 and 2015-2016 and were equipped with a digital acoustic recorder and conductivity-temperature-depth instrument. Gliders surveyed an area of approximately 1000 km2. Delphinid whistles were detected on 93 of 128 (73%) deployment days. Animals were detected more often at night. Presence was consistent over 2 years, although detection rates showed annual and monthly variability. Spatial distribution differed between years, but most detections occurred close to Stellwagen Bank. Visual assessment of spectrograms suggests the presence of 2 species, Atlantic white-sided dolphins and common dolphins. The reoccurrence of 2 probable signature whistles over several weeks and consecutive winter seasons suggests prolonged occupancy during winter and possible annual site fidelity. These data show a consistent and frequent presence of delphinids near a known marine mammal foraging area (Stellwagen Bank) during late fall and winter and are a first step towards understanding both how odontocetes influence the Massachusetts Bay/Gulf of Maine ecosystem and how they may be impacted by human activities.
    Description: We gratefully acknowledge the NOAA Northeast Fisheries Science Center, Stellwagen Bank National Marine Sanctuary, The Nature Conservancy, Massachusetts Division of Marine Fisheries, and the University of Massachusetts Dartmouth for their collaboration and support for this project. We thank Susan Parks, Julie Oswald, Sofie Van Parijs, and Danielle Cholewiak for helpful discussionsand sharing acoustic recordings for species comparisons. We are grateful to Ben Hodges for critical assistance with preparing, deploying, and recovering gliders. Thanks to Michael Thompson for assistance with spatial analysis and Dave Wiley for support and insights into the Stellwagen Bank ecosystem. The WHOI Marine Mammal Center provided additional funding for this work. Funding support for T.L.S. was provided by the NOAA Dr. Nancy Foster Scholarship. Finally, we thank the 3 anonymous re viewers for their comments and suggestions that improved this manuscript.
    Keywords: Odontocetes ; Habitat use ; Passive acoustic monitoring ; Stellwagen Bank ; Gulf of Maine ; Slocum gliders
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2020. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 147(6), (2020): 4069, doi:10.1121/10.0001400.
    Description: Marine mammals have fine-tuned hearing abilities, which makes them vulnerable to human-induced sounds from shipping, sonars, pile drivers, and air guns. Many species of marine birds, such as penguins, auks, and cormorants, find their food underwater where light is often limited, suggesting sound detection may play a vital role. Yet, for most marine birds, it is unknown whether they are using, and can thereby be affected by, underwater sound. The authors conducted a series of playback experiments to test whether Alcid seabirds responded to and were disrupted by, underwater sound. Underwater broadband sound bursts and mid-frequency naval 53 C sonar signals were presented to two common murres (Uria aalge) in a quiet pool. The received sound pressure levels varied from 110 to 137 dB re 1 μPa. Both murres showed consistent reactions to sounds of all intensities, as compared to no reactions during control trials. For one of the birds, there was a clearly graded response, so that more responses were found at higher received levels. The authors' findings indicate that common murres may be affected by, and therefore potentially also vulnerable to, underwater noise. The effect of man-made noise on murres, and possibly other marine birds, requires more thorough consideration.
    Description: This project was funded by the U. S. Navy's Living Marine Resources Program (BAA N39433015R7203) and Woods Hole Oceanographic Institution. Birds were loaned from Copenhagen Zoo. Work was conducted under permission from the WHOI Institutional Animal Care and Use Committee, and animal permit to University of Southern Denmark No. 2300-50120-00003-09 from the Danish Ministry of Food and Agriculture. Statistical analysis was assisted by Simeon Smeele (MPI Konstanz, Germany) and Owen Jones (University of Southern Denmark).
    Description: 2020-12-22
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Soundscape monitoring acoustic data
    Description: Matlab R2016 was used to process acoustic data from raw wave audio files. Mean power spectral densities were estimated (Hamming window, non-overlapping 0.5-sec windows, frequency resolution: 1.47 Hz) within 1-minute samples across the total experiment length (62 hours). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/742573
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1536782
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yang, W.-C., Chen, C.-F., Chuah, Y.-C., Zhuang, C.-R., Chen, I.-H., Mooney, T. A., Stott, J., Blanchard, M., Jen, I.-F., & Chou, L.-S. Anthropogenic sound exposure-induced stress in captive dolphins and implications for cetacean health. Frontiers in Marine Science, 8,(2021): 606736, https://doi.org/10.3389/fmars.2021.606736.
    Description: Many cetaceans are exposed to increasing pressure caused by anthropogenic activities in their marine environment. Anthropogenic sound has been recognized as a possible stressor for cetaceans that may have impacts on health. However, the relationship between stress, hormones, and cytokines secretion in cetaceans is complex and not fully understood. Moreover, the effects of stress are often inconsistent because the character, intensity, and duration of the stressors are variable. For a better understanding of how anthropogenic sounds affect the psychophysiology of cetaceans, the present study compared the changes of cortisol concentration and cytokine gene transcriptions in blood samples and behaviors of captive bottlenose dolphins (Tursiops truncatus) after sound exposures. The sound stimuli were 800 Hz pure-tone multiple impulsive sound for 30 min at three different sound levels (estimated mean received SPL: 0, 120, and 140 dB re 1 μPa) that likely cause no permanent and temporary hearing threshold shift in dolphins. Six cytokine genes (IL-2Rα, IL-4, IL-10, IL-12, TNF-α, and IFN-γ) were selected for analysis. Cortisol levels and IL-10 gene transcription increased and IFNγ/IL-10 ratio was lower after a 30-min high-level sound exposure, indicating the sound stimuli used in this study could be a stressor for cetaceans, although only minor behavior changes were observed. This study may shed light on the potential impact of pile driving-like sounds on the endocrine and immune systems in cetaceans and provide imperative information regarding sound exposure for free-ranging cetaceans.
    Description: This work was supported by the Ministry of Science and Technology in Taiwan (MOST 108-2313-B-002-021 and MOST 109-2628-B-002-028).
    Keywords: sound ; cortisol ; cytokine ; behavior ; dolphins ; stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, Z. A., Michel, A. P. M., & Mooney, T. A. Accelerating global ocean observing: monitoring the coastal ocean through broadly accessible, low-cost sensor networks. Marine Technology Society Journal, 55(3), (2021): 82–83, https://doi.org/10.4031/MTSJ.55.3.52.
    Description: The global coastal ocean provides food and other critical resources to human societies. Yet this habitat, for which many depend, has experienced severe degradation from human activities. The rates of human-induced changes along the coast demand significantly improved coverage of ocean observations in order to support science-based decision making and policy formation tailored to specific regions. Our proposal envisions developing a global network of low-cost, easily produced and readily deployed oceanographic sensors for use on a wide variety of platforms in the coastal ocean. A substantially large number of these sensors can thus be installed on existing infrastructure, ships of opportunity, and fishing fleets, or even individually along the coast, particularly in vulnerable and disadvantaged regions. This would vastly increase the spatiotemporal resolution of the current data coverage along the coast, allowing greater equitable access. It would also offer significant opportunities for partnership with communities, NGOs, governments, and other stakeholders, as well as a wide range of commercial and industrial sectors to develop and deploy sensors in scalable networks transmitting data in near-real time. Finally, it presents a vastly lowered bar for participation by citizen scientists and other engaged members of the public to address location-specific coastal problems anywhere in the world.
    Description: National Science Foundation; Project Title “Collaborative Research: IDBR: Type A: A High-resolution bio-sensor to simultaneously measure the behavior, vital rates and environment of key marine organisms”; Award Number 1455593 to ZAW and TAM.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Castellote, M., Mooney, A., Andrews, R., Deruiter, S., Lee, W.-J., Ferguson, M., & Wade, P. Beluga whale (Delphinapterus leucas) acoustic foraging behavior and applications for long term monitoring. Plos One, 16(11), (2021): e0260485, https://doi.org/10.1371/journal.pone.0260485.
    Description: Cook Inlet, Alaska, is home to an endangered and declining population of 279 belugas (Delphinapterus leucas). Recovery efforts highlight a paucity of basic ecological knowledge, impeding the correct assessment of threats and the development of recovery actions. In particular, information on diet and foraging habitat is very limited for this population. Passive acoustic monitoring has proven to be an efficient approach to monitor beluga distribution and seasonal occurrence. Identifying acoustic foraging behavior could help address the current gap in information on diet and foraging habitat. To address this conservation challenge, eight belugas from a comparative, healthy population in Bristol Bay, Alaska, were instrumented with a multi-sensor tag (DTAG), a satellite tag, and a stomach temperature transmitter in August 2014 and May 2016. DTAG deployments provided 129.6 hours of data including foraging and social behavioral states. A total of 68 echolocation click trains ending in terminal buzzes were identified during successful prey chasing and capture, as well as during social interactions. Of these, 37 click trains were successfully processed to measure inter-click intervals (ICI) and ICI trend in their buzzing section. Terminal buzzes with short ICI (minimum ICI 〈8.98 ms) and consistently decreasing ICI trend (ICI increment range 〈1.49 ms) were exclusively associated with feeding behavior. This dual metric was applied to acoustic data from one acoustic mooring within the Cook Inlet beluga critical habitat as an example of the application of detecting feeding in long-term passive acoustic monitoring data. This approach allowed description of the relationship between beluga presence, feeding occurrence, and the timing of spawning runs by different species of anadromous fish. Results reflected a clear preference for the Susitna River delta during eulachon (Thaleichthys pacificus), Chinook (Oncorhynchus tshawytscha), pink (Oncorhynchus gorbuscha), and coho (Oncorhynchus kisutch) salmon spawning run periods, with increased feeding occurrence at the peak of the Chinook and pink salmon runs.
    Description: Project funding was provided by Georgia Aquarium, the Marine Mammal Laboratory of the Alaska Fisheries Science Center (MML/AFSC). Tagging was funded by the NOAA Fisheries Office of Science and Technology’s Ocean Acoustics Program. DTAG data analysis was funded by the U.S. Marine Mammal Commission grant #16-239. Funding for collecting and analyzing Cook Inlet beluga acoustic data in Susitna Delta was provided by the National Marine Fisheries Service Section 6 Office to the Alaska Department of Fish and Game. This publication is partially funded by the Cooperative Institute for Climate, Ocean, and Ecosystem Studies (CICOES), University of Washington, under NOAA Cooperative Agreement NA15OAR4320063, Contribution No. 2021-1145.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Goertz, C. E. C., Woodie, K., Long, B., Hartman, L., Gaglione, E., Christen, D., Clauss, T., Flower, J., Tuttle, A., Richard, C., Romano, T. A., Schmitt, T., Otjen, E., Osborn, S., Aibel, S., Binder, T., Van Bonn, W., Castellote, M., Mooney, T. A., Dennison-Gibby, S., Burek-Huntington, K., & Rowles, T. K. (2021). Stranded beluga (Delphinapterus leucas) calf response and care: reports of two cases with different outcomes. Polar Research, 40, 5514, https://doi.org/10.33265/polar.v40.5514.
    Description: Given the remote, rugged areas belugas typically inhabit and the low rehabilitation success rate with any cetacean, it is rare to have the opportunity to rescue a live-stranded beluga. The Alaska SeaLife Center cared for two stranded beluga calves with two different outcomes. In 2012, a neonatal male beluga calf (DL1202) stranded following intense storms in Bristol Bay. In 2017, a helicopter pilot discovered a stranded male beluga calf (DL1705) during a flight over Cook Inlet. The Alaska SeaLife Center transported both calves for rehabilitation and utilized supportive care plans based on those for other species of stranded cetaceans and care of neonatal belugas at zoological facilities. Diagnostics included complete blood counts, serum chemistries, microbial cultures, hearing tests, imaging and morphometric measurements to monitor systemic health. Treatments included in-pool flotation support; antimicrobials; gastrointestinal support; and close monitoring of respirations, urination, defecation and behaviour. After three weeks of supportive care, the Bristol Bay calf (DL1202) succumbed to sepsis secondary to a possible prematurity-related lack of passive transfer of antibodies. After seven weeks, the Cook Inlet calf (DL1705) recovered and all medications were discontinued. Unable to survive on his own, he was declared non-releasable and placed in long-term care at a zoological facility, to live with other belugas. Aspects and details from successful cases of cetacean critical care become important references especially vital for the survival of essential animals in small, endangered populations.
    Description: The ASLC, Georgia Aquarium, Mystic Aquarium, SeaWorld, John G. Shedd Aquarium, the Texas Marine Mammal Stranding Network and Vancouver Aquarium self-funded the cost of travel and salaries for their staff. Additional funding was provided by the Prescott Grant Program, Prescott Emergency Grant Program, SeaWorld Busch Gardens Conservation Fund and individual and corporate donations to the ASLC Center wildlife response programme.
    Keywords: Cetacean ; neonate ; nutrition ; hand-rearing ; critical care
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: Author Posting. © Acoustical Society of America, 2021. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 150(5),(2021): 3288–3301, https://doi.org/10.1121/10.0006973.
    Description: Snapping shrimps are pervasive generators of underwater sound in temperate and tropical coastal seas across oceans of the world. Shrimp snaps can act as signals to conspecifics and provide acoustic information to other species and even to humans for habitat monitoring. Despite this, there are few controlled measurements of the acoustic parameters of these abundant acoustic stimuli. Here, the characteristics of snaps produced by 35 individuals of two species, Alpheus heterochaelis and Alpheus angulosus, are examined to evaluate the variability within and between the species. Animals were collected from the wild and the sound pressure and particle acceleration were measured at 0.2, 0.5, and 1 m from individual shrimp in controlled laboratory conditions to address the snap properties at communication-relevant distances. The source and sound exposure levels (at 1 m) were not significantly different between these two species. The frequency spectra were broadband with peak frequencies consistently below 10 kHz. The particle acceleration, the sound component likely detectable by shrimp, was measured across three axes. The directional amplitude variation suggests that the particle motion of snaps could act as a localization cue. The amplitudes of the snap pressure and acceleration decreased with distance, yet the levels remained sufficient for the predicted detection range by nearby conspecifics.
    Description: This research was funded by the National Science Foundation Biological Oceanography Award No. 15-36782, the Defense Advanced Research Projects Agency, and the Woods Hole Oceanographic Institution.
    Description: 2022-05-03
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-07-26
    Description: Author Posting. © Acoustical Society of America, 2022. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 151(1), (2022): 205–215, https://doi.org/10.1121/10.0009237.
    Description: There are substantial knowledge gaps regarding both the bioacoustics and the responses of animals to sounds associated with pre-construction, construction, and operations of offshore wind (OSW) energy development. A workgroup of the 2020 State of the Science Workshop on Wildlife and Offshore Wind Energy identified studies for the next five years to help stakeholders better understand potential cumulative biological impacts of sound and vibration to fishes and aquatic invertebrates as the OSW industry develops. The workgroup identified seven short-term priorities that include a mix of primary research and coordination efforts. Key research needs include the examination of animal displacement and other behavioral responses to sound, as well as hearing sensitivity studies related to particle motion, substrate vibration, and sound pressure. Other needs include: identification of priority taxa on which to focus research; standardization of methods; development of a long-term highly instrumented field site; and examination of sound mitigation options for fishes and aquatic invertebrates. Effective assessment of potential cumulative impacts of sound and vibration on fishes and aquatic invertebrates is currently precluded by these and other knowledge gaps. However, filling critical gaps in knowledge will improve our understanding of possible sound-related impacts of OSW energy development to populations and ecosystems.
    Description: Support for this project was provided by New York State Energy Research and Development Authority (Agreement #118972).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...