GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU Fall Meeting  (1)
  • John Wiley & Sons  (1)
  • 2020-2023  (2)
Document type
Keywords
Publisher
Years
Year
  • 1
    Publication Date: 2022-06-29
    Description: The area around the Antarctic Peninsula is projected to undergo rapid climatic changes affecting seasonal sea ice cover, water column stratification, terrestrial meltwater run-off, and related nutrient input and thus the conditions for primary production and organic carbon export. The impact of such environmental changes on benthic microbial communities is poorly understood. In this study, we investigated the impact of different sea ice cover and redox conditions on microbial community compositions from 7 different stations (330–450 m water depth) along a 400-mile transect from the eastern shelf of the Antarctic Peninsula to the west of the South Orkney Islands. Two deep stations (3000 m depth) were sampled for comparison. Samples were collected from 6 different intervals down to a depth of 16 cm. The diversity and composition of microbial communities were determined by 16S ribosomal RNA (rRNA) gene sequencing. Redox conditions in sediments with long ice-free periods showed that iron and sulfate reduction are dominant anaerobic pathways for carbon mineralization. In contrast, sediments at a heavily ice-covered station were dominated by the aerobic pathway, which accounted for 〉94 % of the total carbon degradation. Our results reveal that the microbial community composition at the station under heavy ice-cover differs significantly from stations under low ice-cover and tends to cluster separately, suggesting that sea ice cover is the main driver for changes in microbial community composition in the shelf sediments. Further, the frequency of marginal sea ice conditions (here defined as 5-35% sea ice cover) is significantly different between stations (p 0.001) and can explain 5 to 13% of the variation between microbial communities. The bacterial communities at stations under low ice-cover co-varied significantly with TOC content and porewater concentrations of ammonia, dissolved iron, and sulfide. This was reflected in the microbial community composition, where stations with low ice-cover were dominated by Desulfuromonadia, a taxon including many iron and sulfate reducers. At the station with heavy ice-cover, this class showed very low abundances. Our findings demonstrate that the benthic microbial composition and mediated-processes at various sites around the eastern Antarctic Peninsula are regulated by sea ice cover.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Costa, K. M., Hayes, C. T., Anderson, R. F., Pavia, F. J., Bausch, A., Deng, F., Dutay, J., Geibert, W., Heinze, C., Henderson, G., Hillaire-Marcel, C., Hoffmann, S., Jaccard, S. L., Jacobel, A. W., Kienast, S. S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J. F., Mekik, F., Middleton, J. L., Missiaen, L., Not, C., Pichat, S., Robinson, L. F., Rowland, G. H., Roy-Barman, M., Alessandro, Torfstein, A., Winckler, G., & Zhou, Y. 230 Th normalization: new insights on an essential tool for quantifying sedimentary fluxes in the modern and quaternary ocean. Paleoceanography and Paleoclimatology, 35(2), (2020): e2019PA003820, doi:10.1029/2019PA003820.
    Description: 230Th normalization is a valuable paleoceanographic tool for reconstructing high‐resolution sediment fluxes during the late Pleistocene (last ~500,000 years). As its application has expanded to ever more diverse marine environments, the nuances of 230Th systematics, with regard to particle type, particle size, lateral advective/diffusive redistribution, and other processes, have emerged. We synthesized over 1000 sedimentary records of 230Th from across the global ocean at two time slices, the late Holocene (0–5,000 years ago, or 0–5 ka) and the Last Glacial Maximum (18.5–23.5 ka), and investigated the spatial structure of 230Th‐normalized mass fluxes. On a global scale, sedimentary mass fluxes were significantly higher during the Last Glacial Maximum (1.79–2.17 g/cm2kyr, 95% confidence) relative to the Holocene (1.48–1.68 g/cm2kyr, 95% confidence). We then examined the potential confounding influences of boundary scavenging, nepheloid layers, hydrothermal scavenging, size‐dependent sediment fractionation, and carbonate dissolution on the efficacy of 230Th as a constant flux proxy. Anomalous 230Th behavior is sometimes observed proximal to hydrothermal ridges and in continental margins where high particle fluxes and steep continental slopes can lead to the combined effects of boundary scavenging and nepheloid interference. Notwithstanding these limitations, we found that 230Th normalization is a robust tool for determining sediment mass accumulation rates in the majority of pelagic marine settings (〉1,000 m water depth).
    Description: We thank Zanna Chase and one anonymous reviewer for valuable feedback. K. M. C. was supported by a Postdoctoral Scholarship at WHOI. L. M. acknowledges funding from the Australian Research Council grant DP180100048. The contribution of C. T. H., J. F. M., and R. F. A. were supported in part by the U.S. National Science Foundation (US‐NSF). G. H. R. was supported by the Natural Environment Research Council (grant NE/L002434/1). S. L. J. acknowledges support from the Swiss National Science Foundation (grants PP002P2_144811 and PP00P2_172915). This study was supported by the Past Global Changes (PAGES) project, which in turn received support from the Swiss Academy of Sciences and the US‐NSF. This work grew out of a 2018 workshop in Aix‐Marseille, France, funded by PAGES, GEOTRACES, SCOR, US‐NSF, Aix‐Marseille Université, and John Cantle Scientific. All data are publicly available as supporting information to this document and on the National Center for Environmental Information (NCEI) at https://www.ncdc.noaa.gov/paleo/study/28791.
    Keywords: Thorium ; Sediment flux ; Holocene ; LGM ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...