GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C06014, doi:10.1029/2006JC003947.
    Description: In aerial surveys conducted during the Tropical Ocean–Global Atmosphere Coupled Ocean-Atmosphere Response Experiment and the low-wind component of the Coupled Boundary Layer Air-Sea Transfer (CBLAST-Low) oceanographic field programs, sea surface temperature (SST) variability at relatively short spatial scales (O(50 m) to O(1 km)) was observed to increase with decreasing wind speed. A unique set of coincident surface and subsurface oceanic temperature measurements from CBLAST-Low is used to investigate the subsurface expression of this spatially organized SST variability, and the SST variability is linked to internal waves. The data are used to test two previously hypothesized mechanisms for SST signatures of oceanic internal waves: a modulation of the cool-skin effect and a modulation of vertical mixing within the diurnal warm layer. Under conditions of weak winds and strong insolation (which favor formation of a diurnal warm layer), the data reveal a link between the spatially periodic SST fluctuations and subsurface temperature and velocity fluctuations associated with oceanic internal waves, suggesting that some mechanism involving the diurnal warm layer is responsible for the observed signal. Internal-wave signals in skin temperature very closely resemble temperature signals measured at a depth of about 20 cm, indicating that the observed internal-wave SST signal is not a result of modulation of the cool-skin effect. Numerical experiments using a one-dimensional upper ocean model support the notion that internal-wave heaving of the warm-layer base can produce alternating bands of relatively warm and cool SST through the combined effects of surface heating and modulation of wind-driven vertical shear.
    Description: We gratefully acknowledge funding for this research from the Office of Naval Research through the CBLAST Departmental Research Initiative (grants N00014-01-1-0029, N00014-05-10090, N00014-01-1-0081, N00014-04-1-0110, N00014-05-1-0036, N00014-01-1-0080) and the Secretary of the Navy/Chief of Naval Operations Chair (grant N00014-99-1-0090).
    Keywords: Internal waves ; Upper-ocean processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2003
    Description: In this thesis I have endeavored to determine the factors and physical processes that controlled SST and thermocline depth at 10°N, 125°W during the Pan American Climate Study (PACS) field program. Analysis based on the PACS data set, TOPEX/Poseidon sea surface height data, European Remote Sensing satellite wind data, and model simulations and experiments reveals that the dominant mechanisms affecting the thermocline depth and SST at the mooring site during the measurement period were local surface fluxes, Ekman pumping, and vertical mixing associated with enhancement of the vertical shear by strong near-inertial waves in the upper ocean superimposed upon intra-seasonal baroclinic Rossby waves and the large scale zonal flow.
    Description: This work was funded under NOAA Grant NA17RJ1223 and I also gratefully acknowledge receipt of an MIT Presidential Fellowship in 2000-2001.
    Keywords: Thermoclines ; Ocean-atmosphere interaction ; Roger Revelle (Ship) Cruise Genesis 4 ; Thomas G. Thompson (Ship) Cruise TN73 ; Melville (Ship) Cruise PACS03MV
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology; air-sea fluxes of heat, freshwater, and momentum; and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come between October and December. During the 2008 cruise on the NOAA ship Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the Stratus 8 WHOI surface mooring that had been deployed in October 2007, deployment of a new (Stratus 9) WHOI surface mooring at that site; in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by staff of the NOAA Earth System Research Laboratory (ESRL); and observations of the stratus clouds and lower atmosphere by NOAA ESRL. A buoy for the Pacific tsunami warning system was also serviced in collaboration with the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). The DART (Deep-Ocean Assessment and Reporting of Tsunami) carries IMET sensors and subsurface oceanographic instruments. A DART II buoy was deployed north of the STRATUS buoy, by personnel from the National Data Buoy Center (NDBC) Argo floats and drifters were launched, and CTD casts carried out during the cruise. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. Additionally, the Stratus 8 buoy received a partial CO2 detector from the Pacific Marine Environmental Laboratory (PMEL). IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ESRL instrumentation used during the 2008 cruise included cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Ronald H. Brown (Ship) Cruise RB08-06 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: The long-range scientific objective of the Coupled Boundary Layer Air Sea Transfer (CBLAST) project is to observe and understand the temporal and spatial variability of the upper ocean, to identify the processes that determine that variability, and to examine its predictability. Air-sea interaction is of particular interest, but attention is also paid to the coupling of the sub-thermocline ocean to the mixed layer and to both the open ocean and littoral regimes. We seek to do this over a wide range of environmental conditions with the intent of improving our understanding of upper ocean dynamics and of the physical processes that determine the vertical and horizontal structure of the upper ocean. Field work for CBLAST was conducted during the summers of 2001, 2002, and 2003 off the south shore of Martha’s Vineyard, Massachusetts. The 2003 field work was conducted from the following platforms: heavy moorings, light moorings, drifters, F/V Nobska, CIRPAS Pelican aircraft, and an IR Cessna Aircraft. This report documents the 2003 field work and includes field notes, platform descriptions, discussion of data returns, and mooring logs. The 2003 Intensive Operating Period (IOP) was very successful and a high data return was seen.
    Description: Funding was provided by the Office of Naval Research under contract numbers N00014-01-1-0029 and N00014-05-10090.
    Keywords: Air-sea interaction ; Upper ocean dynamics ; Mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 16410944 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2007
    Description: The role of ocean dynamics in driving air-sea interaction is examined at two contrasting sites on 125°W in the eastern tropical Pacific Ocean using data from the Pan American Climate Study (PACS) field program. Analysis based on the PACS data set and satellite observations of sea surface temperature (SST) reveals marked differences in the role of ocean dynamics in modulating SST. At a near-equatorial site (3°S), the 1997-1998 El Nino event dominated the evolution of SST and surface heat fluxes, and it is found that wind-driven southward Ekman transport was important in the local transition from El Nino to La Nina conditions. At a 10°N site near the summertime position of the Inter-tropical Convergence Zone, oceanic mesoscale motions played an important role in modulating SST at intraseasonal (50- to 100-day) timescales, and the buoy observations suggest that there are variations in surface solar radiation coupled to these mesoscale SST variations. This suggests that the mesoscale oceanic variability may influence the occurrence of clouds. The intraseasonal variability in currents, sea surface height, and SST at the northern site is examined within the broader spatial and temporal context afforded by satellite data. The oscillations have zonal wavelengths of 550-1650 km and propagate westward in a manner consistent with the dispersion relation for first baroclinic mode, free Rossby waves in the presence of a mean westward flow. The hypothesis that the intraseasonal variability and its annual cycle are associated with baroclinic instability of the North Equatorial Current is supported by a spatio-temporal correlation between the amplitude of intraseasonal variability and the occurrence of westward zonal flows meeting an approximate necessary condition for baroclinic instability. Focusing on 10°N in the eastern tropical Pacific, the hypothesis that mesoscale oceanic SST variability can systematically influence cloud properties is investigated using several satellite data products. A statistically significant relationship between SST and columnar cloud liquid water (CLW), cloud reflectivity, and surface solar radiation is identified within the wavenumber-frequency band corresponding to oceanic Rossby waves. Analysis of seven years of CLW data and 20 years surface solar radiation data indicates that 10-20% of the variance of these cloud-related properties at intraseasonal periods and wavelengths on the order of 10° longitude can be ascribed to SST signals driven by oceanic Rossby waves.
    Description: I gratefully acknowledge support from the following sources: NOAA Grants NA87RJ0445 (2002-2003) and NA17RJ1223 (2005-2006), and an MIT Presidential Fellowship (2000-2001). I also received support from The Cooperative Institute for Climate and Ocean Research, a NOAA-WHOI joint institute (NOAA Grant NA17RJ1223).
    Keywords: Ocean-atmosphere interaction ; Cloud physics ; Roger Revelle (Ship) Cruise Genesis 4 ; Thomas G. Thompson (Ship) Cruise TN73 ; Melville (Ship) Cruise PACS03MV
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: King Abdullah University of Science and Technology (KAUST) is being built near Thuwal, Saudi Arabia with the goal of becoming a world-class, graduate-level research university. As a step toward this goal, KAUST has partnered with the Woods Hole Oceanographic Institution (WHOI) to undertake various studies of the oceanography of the Red Sea in order to establish a research program in ocean sciences by the time the university opens its doors in the fall of 2009. Two of the KAUST-WHOI research projects involve deployment of surface moorings and associated instrumentation to measure physical properties of the Red Sea, such as temperature, salinity, and currents, at four locations off the coast of Saudi Arabia. The goal of these measurements is to better understand the evolution and dynamics of the circulation and air-sea interaction in the Red Sea. Two surface moorings and two bottom tripods (PI, Steven Lentz) were deployed at 50-55-m depth near 21°57'N, 38°46'E over the continental shelf close to the Saudi coast. An additional surface mooring/bottom tripod pair was deployed near 21°58'N, 38°50'E at the outer fringe of a reef system directly onshore of the shelf mooring/tripod pairs (PI, Lentz). The coastal moorings carry instruments to estimate temperature, salinity, and fluorescence; and the nearby bottom tripods support instruments to measure bottom pressure and the vertical profile of the currents. Additional instruments, principally bottom temperature sensors, were deployed over the reef system onshore of the shelf moorings. One air-sea interaction mooring (PI, J. Thomas Farrar) was deployed at 693-m depth near 22°10'N, 38°30'E. The air-sea interaction mooring carries instruments for measuring temperature, salinity, (water) velocity, winds, air temperature, humidity, barometric pressure, incident sunlight, infrared radiation, precipitation, and surface waves. A coastal meteorological tower was also installed on the KAUST campus in Thuwal (PI, Farrar). These measurements are of value because there are few time series of oceanographic and meteorological properties of the Red Sea that can be used to characterize the circulation, test numerical models of the Red Sea circulation, or formulate theoretical models of the physics of the Red Sea circulation. These measurements will permit a characterization of the Red Sea circulation with high temporal resolution at the mooring locations, and accurate in-situ estimates of the air-sea exchange of heat, freshwater, and momentum. In October 2008, a cruise was made aboard the R/V Oceanus to deploy the shelf and air-sea interaction moorings, and other fieldwork (e.g., tower instrumentation and deployment of reef instrumentation) was conducted after the cruise. Some additional data were collected during the cruise with shipboard instrumentation. This report documents the cruise and the data collected during the fall 2008 fieldwork.
    Description: Funding for this report was provided by the King Abdullah University of Science and Technology (KAUST) under a cooperative research agreement with Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gentemann, C. L., Clayson, C. A., Brown, S., Lee, T., Parfitt, R., Farrar, J. T., Bourassa, M., Minnett, P. J., Seo, H., Gille, S. T., & Zlotnicki, V. FluxSat: measuring the ocean-atmosphere turbulent exchange of heat and moisture from space. Remote Sensing, 12(11), (2020): 1796, doi:10.3390/rs12111796.
    Description: Recent results using wind and sea surface temperature data from satellites and high-resolution coupled models suggest that mesoscale ocean–atmosphere interactions affect the locations and evolution of storms and seasonal precipitation over continental regions such as the western US and Europe. The processes responsible for this coupling are difficult to verify due to the paucity of accurate air–sea turbulent heat and moisture flux data. These fluxes are currently derived by combining satellite measurements that are not coincident and have differing and relatively low spatial resolutions, introducing sampling errors that are largest in regions with high spatial and temporal variability. Observational errors related to sensor design also contribute to increased uncertainty. Leveraging recent advances in sensor technology, we here describe a satellite mission concept, FluxSat, that aims to simultaneously measure all variables necessary for accurate estimation of ocean–atmosphere turbulent heat and moisture fluxes and capture the effect of oceanic mesoscale forcing. Sensor design is expected to reduce observational errors of the latent and sensible heat fluxes by almost 50%. FluxSat will improve the accuracy of the fluxes at spatial scales critical to understanding the coupled ocean–atmosphere boundary layer system, providing measurements needed to improve weather forecasts and climate model simulations.
    Description: C.L.G. was funded by NASA grant 80NSSC18K0837. C.A.C. was funded by NASA grants 80NSSC18K0778 and 80NSSC20K0662. J.T.F. was funded by NASA grants NNX17AH54G, NNX16AH76G, and 80NSSC19K1256. S.T.G. was funded by the National Science Foundation grant PLR-1425989 and by the NASA Ocean Vector Winds Science Team grant 80NSSC19K0059. M.B. was funded in part by the Ocean Observing and Monitoring Division, Climate Program Office (FundRef number 100007298), National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and by the NASA Ocean Vector Winds Science Team grant through NASA/JPL. H.S. was funded by National Oceanic and Atmospheric Administration (NOAA) grant NA19OAR4310376 and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research at Woods Hole Oceanographic Institution.
    Keywords: Air-sea interactions ; Mesoscale ; Fluxes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(12),(2020): e2020JC016271, https://doi.org/10.1029/2020JC016271.
    Description: Asian summer monsoon has a planetary‐scale, westward propagating “quasi‐biweekly” mode of variability with a 10–25 day period. Six years of moored observations at 18°N, 89.5°E in the north Bay of Bengal (BoB) reveal distinct quasi‐biweekly variability in sea surface salinity (SSS) during summer and autumn, with peak‐to‐peak amplitude of 3–8 psu. This large‐amplitude SSS variability is not due to variations of surface freshwater flux or river runoff. We show from the moored data, satellite SSS, and reanalyses that surface winds associated with the quasi‐biweekly monsoon mode and embedded weather‐scale systems, drive SSS and coastal sea level variability in 2015 summer monsoon. When winds are calm, geostrophic currents associated with mesoscale ocean eddies transport Ganga‐Brahmaputra‐Meghna river water southward to the mooring, salinity falls, and the ocean mixed layer shallows to 1–10 m. During active (cloudy, windy) spells of quasi‐biweekly monsoon mode, directly wind‐forced surface currents carry river water away to the east and north, leading to increased salinity at the moorings, and rise of sea level by 0.1–0.5 m along the eastern and northern boundary of the bay. During July–August 2015, a shallow pool of low‐salinity river water lies in the northeastern bay. The amplitude of a 20‐day oscillation of sea surface temperature (SST) is two times larger within the fresh pool than in the saltier ocean to the west, although surface heat flux is nearly identical in the two regions. This is direct evidence that spatial‐temporal variations of BoB salinity influences sub‐seasonal SST variations, and possibly SST‐mediated monsoon air‐sea interaction.
    Description: The authors thank the Ministry of Earth Sciences (MoES) institutes NIOT and INCOIS, and the Upper Ocean Processes (UOP) group at WHOI for design, integration, and deployment of moorings in the BoB. The WHOI mooring was deployed from the ORV Sagar Nidhi and recovered from the ORV Sagar Kanya—we thank the officers, crew and science teams on the cruises for their support. Sengupta, Ravichandran and Sukhatme acknowledge MoES and the National Monsoon Mission, Indian Institute of Tropical Meteorology (IITM), Pune, for support; Lucas and Farrar acknowledge the US Office of Naval Research for support of ASIRI through grants N00014‐13‐1‐0489, N0001413‐100453, N0001417‐12880. We thank S. Shivaprasad, Dipanjan Chaudhuri and Jared Buckley for discussion on ocean currents and Ekman flow, and Fabien Durand for discussion on sea level. JSL would like to thank the Divecha Center for Climate Change, IISc., for support. DS acknowledges support from the Department of Science and Technology (DST), New Delhi, under the Indo‐Spanish Programme.
    Description: 2021-05-16
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-20
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, S. R., Farrar, J. T., Weller, R. A., Jiang, H., & Pratt, L. J. The land-sea breeze of the Red Sea: observations, simulations, and relationships to regional moisture transport. Journal of Geophysical Research-Atmospheres, 124, (2019): 13803-13825, doi: 10.1029/2019JD031007.
    Description: Unique in situ observations of atmospheric conditions over the Red Sea and the coastal Arabian Peninsula are examined to study the dynamics and regional impacts of the local land‐sea breeze cycle (LSBC). During a 26‐month data record spanning 2008–2011, observed LSBC events occurred year‐round, frequently exhibiting cross‐shore wind velocities in excess of 8 m/s. Observed onshore and offshore features of both the land‐ and sea‐breeze phases of the cycle are presented, and their seasonal modulation is considered. Weather Research and Forecasting climate downscaling simulations and satellite measurements are used to extend the analysis. In the model, the amplitude of the LSBC is significantly larger in the vicinity of the steeper terrain elements encircling the basin, suggesting an enhancement by the associated slope winds. Observed and simulated conditions also reflected distinct gravity‐current characteristics of the intrinsic moist marine air mass during both phases of the LSBC. Specifically, the advance and retreat of marine air mass was directly tied to the development of internal boundary layers onshore and offshore throughout the period of study. Convergence in the lateral moisture flux resulting from this air mass ascending the coastal topography (sea‐breeze phase) as well as colliding with air masses from the opposing coastline (land‐breeze phase) further resulted in cumulous cloud formation and precipitation.
    Description: This study was supported by National Science Foundation (NSF) Grant OCE‐1435665 and National Aeronautics and Space Administration (NASA) Grants 80NSSC18K1494 and NNX14AM71G. Further support for Lawrence Pratt was provided by NSF Grant OCE‐1154641. The authors wish to thank Sarah Gille for insightful conversations related to this work. GLDAS data used in this study were acquired as part of the mission of NASA's Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). We further acknowledge the use of data and imagery from LANCE FIRMS operated by the NASA/GSFC/Earth Science Data and Information System (ESDIS) with funding provided by NASA/HQ. The in situ data from the WHOI/KAUST mooring is available at a WHOI repository (http://uop.whoi.edu/projects/kaust/form.php) for academic and research purposes. The mooring data collected during the WHOI‐KAUST collaboration was made possible by awards USA00001, USA00002, and KSA00011 to WHOI by the KAUST in the Kingdom of Saudi Arabia. The buoy and tower data collection was a result of the work of the WHOI Upper Ocean Processes Group and staff at KAUST; John Kemp, Jason Smith, Paul Bouchard, Sean Whelan, Yasser Abualnaja, Yasser Kattan, and Abdulaziz Al‐Suwailem all made major contributions.
    Keywords: Sea‐breeze ; Land‐breeze ; Red Sea ; African coast ; Air‐sea ; Observations and modelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-10-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zippel, S. F., Farrar, J. T., Zappa, C. J., & Plueddemann, A. J. Parsing the kinetic energy budget of the ocean surface mixed layer. Geophysical Research Letters, 49(2), (2022): 2021GL095920, https://doi.org/10.1029/2021GL095920.
    Description: The total rate of work done on the ocean by the wind is of considerable interest for understanding global energy balances, as the energy from the wind drives ocean currents, grows surface waves, and forces vertical mixing. A large but unknown fraction of this atmospheric energy is dissipated by turbulence in the upper ocean. The focus of this work is twofold. First, we describe a framework for evaluating the vertically integrated turbulent kinetic energy (TKE) equation using measurable quantities from a surface mooring, showing the connection to the atmospheric, mean oceanic, and wave energy. Second, we use this framework to evaluate turbulent energetics in the mixed layer using 10 months of mooring data. This evaluation is made possible by recent advances in estimating TKE dissipation rates from long-enduring moorings. We find that surface fluxes are balanced by TKE dissipation rates in the mixed layer to within a factor of two.
    Description: This work was funded by NSF Award No. 2023 020, and by NASA as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS), supporting field work for SPURS-1 (NASA Grant No. NNX11AE84G), and for analysis (NASA Grant No. 80NSSC18K1494), and as part of SASSIE (NASA Grant No. 80NSSC21K0832). This work was also funded by NSF through Grant Award Nos. 1756 839, 2049546, and by ONR through Grant N000141712880 (MISO-BoB).
    Keywords: Air/sea interaction ; Turbulence ; Mixed layer ; Wind work ; Boundary layer ; Waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...