GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (1)
  • 2010-2014  (88)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2022-06-28
    Description: The transit of RV SONNE from Las Palmas (departure: 11.12.2021) to Guayaquil, Ecuador (arrival: 11.01.2022) is directly related to the international collaborative project SO287-CONNECT of GEOMAR in cooperation with Hereon and the University of Bremen, supported by the German Federal Ministry of Education and Research (BMBF) between October 15 2021 and January 15 2024. The research expedition was conducted to decipher the coupling of biogeochemical and ecological processes and their influence on atmospheric chemistry along the transport pathway of water from the upwelling zones off Africa into the Sargasso Sea and further to the Caribbean and the equatorial Pacific. Nutrient-rich water rises from the deep and promotes the growth of plant and animal microorganisms, and fish at the ocean surface off West Africa. The North Equatorial Current water carries the water from the upwelling, which contains large amounts of organic material across the Atlantic to the Caribbean, supporting bacterial activity along the way. But how the nutritious remnants of algae and other substances are processed on their long journey, biochemically transformed, decomposed into nutrients and respired to carbon dioxide, has so far only been partially investigated. Air, seawater and particles were sampled in order to provide new details about the large cycles of carbon and nitrogen, but also of many other elements such as oxygen, iodine, bromine and sulfur. Inorganic and organic bromine and iodine compounds are generally emitted naturally from the ocean into the atmosphere, promote cloud formation and affect climate, and some even reach the stratosphere where they contribute to ozone depletion. We measured how much of these compounds are released from the ocean, and at what locations and how they are transformed in the ocean and in the atmosphere. Sargassum algae, which have become a nuisance on beaches in the western and eastern Atlantic, support life and contribute to carbon cycling in the middle of the Atlantic, the Sargasso Sea and in the Caribbean, while their contribution to halogen cycling and marine bromine and iodine emissions was previously unknown. We investigated the influence of various natural parameters such as temperature and solar radiation on the biogeochemical transformation processes in order to understand the influence of climate change on these processes in incubation experiments with seawater and algae. We investigated how anthropogenic signals such as shipping traffic influence the nitrogen and sulphur cycle in the ocean, as well as the impact of nitrogen oxides from ship exhaust and sulphurous, acidic and dirty water from purification systems on organisms and biochemical processes. Plastic debris was sampled from the surface waters to investigate its contribution to global biogeochemical transformation processes. The working hypotheses of the research program were:  Bioavailability of dissolved organic carbon in surface waters decreases along the productivity gradient and transport pathway from the Eastern to the Western Tropical North Atlantic.  Nutrient gradients from East to West constrain the microbial utilization of organic matter- contributing to an accumulation of C-rich organic matter due to a) limited mineralization and b) enhanced exudation- also leading to gel-like particles accumulation in the western tropical North Atlantic and Sargasso Sea.  Tropospheric and stratospheric ozone are strongly impacted by biogeochemical and ecological processes occurring around and in the NA gyre system related to marine iodine and bromine cycles.  The long-range transport of natural and anthropogenic organic matter in water and of gases and aerosols in the air impact carbon-export, biogeochemical cycles in the water column, and the release of gases and particles from the ocean significantly. 4 SONNE -Berichte, SO287, Las Palmas - Guayaquil, 11.12.2021 - 11.01.202 The data and samples obtained specifically target carbon, nutrient and halogen cycling, the composition of phytoplankton, bacteria, the transport and sequestration of macro algae and the air-sea exchange processes of climate relevant gases and aerosols. The influence of ecological and transport processes, as well as anthropogenic impacts on the North Atlantic gyre system, specifically in the Sargasso Sea and the influence of ship emissions throughout the Atlantic towards the west and into the Pacific will be investigated with the data.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence—although each with important uncertainties—lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-08
    Description: Surface delta(15)N(PON) increased 3.92 +/- 0.48 over the course of 20 days following additions of iron (Fe) to an eddy in close proximity to the Antarctic Polar Front in the Atlantic sector of the Southern Ocean. The change in delta(15)N(PON) was associated with an increase in the 〉20 mu m size fraction, leading to a maximal difference of 6.23 between the 〉20 mu m and 〈20 mu m size fractions. Surface delta(13)C(POC) increased 1.18 +/- 0.31 over the same period. After a decrease in particulate organic matter in the surface layer, a second phytoplankton community developed that accumulated less biomass, had a slower growth rate and was characterized by an offset of 1.56 in delta(13)C(POC) relative to the first community. During growth of the second community, surface delta(13)C(POC) further increased 0.83 +/- 0.13. Here we speculate on ways that carboxylation, nitrogen assimilation, substrate pool enrichment and community composition may have contributed to the gradual increase in delta(13)C(POC) associated with phytoplankton biomass accumulation, as well as the systematic offset in delta(13)C(POC) between the two phytoplankton communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Publications Office of the European Union
    In:  In: Guide to Best Practices for Ocean Acidification Research and Data Reporting. , ed. by Riebesell, U., Fabry, V. J., Hansson, L. and Gattuso, J. P. Publications Office of the European Union, Luxembourg, pp. 181-200.
    Publication Date: 2020-05-06
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC33rd EOS Topial Meeting on Blue Photonics – Optics in the Sea (Blue Photonics 3), Royal Netherlands Institute for Sea Research (NIOZ), Texel (NL), 2013-03-18-2013-03-20
    Publication Date: 2019-07-17
    Description: Quantitative distributions of major functional PFTs of the world ocean improve the understanding of the role of marine phytoplankton in the global marine ecosystem and biogeochemical cycles. Chl-a fluorescence gives insight on the health of phytoplankton and is related to phytoplankton biomass. In this study, global ocean color satellite products of different dominant phytoplankton functional types' (PFTs') biomass and chlorophyll fluorescence retrieved from hyperspectral satellite data using Differential Optical Absorption Spectroscopy applied to phytoplankton (PhytoDOAS) are presented (see also Bracher et al. 2009, Sadeghi et al. 2012a). Data are compared to ocean color products from multispectral sensors and application of the hyperspectral data set in studying phytoplankton dynamics are presented (Sadeghi et al. 2012b, Ying et al. 2012). Although current hyperspectral sensors have poor spatial resolution (〉30kmx30km), they are useful for the verification and improvement of the high spatially resolved multi-spectral ocean color products. Future applications of PhytoDOAS retrieval to other hyperspectral sensors and its synergistic use with information gained from multispectral ocean color sensors are proposed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Quantitative distribution of major functional phytoplankton types (PFTs) of the world ocean improves the understanding of the role of marine phytoplankton in the global marine ecosystem and biogeochemical cycles. Because phytoplankton pigments absorb light for photosynthesis, satellite sensors detecting the ocean color can monitor phytoplankton on the global scale with reasonable spatial and temporal resolution. The analysis of hyper-spectral satellite data with PhytoDOAS, a method of Differential Optical Absorption Spectroscopy (DOAS) currently specialized for SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) on ENVISAT (details in Bracher et al. 2009, Sadegi et al. 2011), enables to extract the optical signature of marker pigments specific for certain PFTs. With including the calculation of the light penetration depth derived from the retrieval of inelastic scattering, the biomass (chl-a) of the PFTs is calculated and data from 2002-2011 have been processed. The lecture will give insight on the retrieval method and show the global maps of PFT distribution of four different dominant PFTs (diatoms, cyanobacteria, coccolithophores, dinoflagellates). In addition, results of evaluating the PHYTODOAS PFT products with in-situ data obtained from collocated pigment water samples analyzed via HPLC, with other satellite and model PFT products will be shown. The use of these global PFT satellite data sets for studying PFT bloom dynamics in specific oceanic regions or for evaluating an ecosystem model will be presented. References: Bracher A., Vountas M., Dinter T., Burrows J.P., Rottgers R., Peeken I. (2009) Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences 6: 751-764 Sadeghi A., Dinter T., Vountas M., Taylor B., Peeken I., Bracher A. Improvements to PhytoDOAS method for identification of major phytoplankton groups using high spectrally resolved satellite data. Ocean Sciences (submitted)
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Biogeosciences, Copernicus Publications, 9, pp. 2585-2596
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Biogeosciences, COPERNICUS GESELLSCHAFT MBH, 8, pp. 3609-3629, ISSN: 1726-4170
    Publication Date: 2019-07-17
    Description: The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the RV Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which we compared to ecological provinces proposed elsewhere in the literature. As could be expected, picophytoplankton was responsible for most of the variability of PFTs in the eastern Atlantic Ocean. Our bio-optical clusters agreed well with established provinces and thus can be used to classify areas of similar biogeography. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: The PhytoDOAS algorithm by Bracher et al. (2009), modified by and Sadeghi et al. (2011), enables the concurrent retrieval of global chl-a of phytoplankton groups (diatoms, cyanobacteria, coccolithophores, dinoflagellates) from hyperspectral satellite data, such as measured by SCIAMACHY onboard ENVISAT. For applying the Differential Optical Absorption Spectroscopy (DOAS) fit from 430-530nm the following absorbers are considered in the analysis: atmosphere: O3, O4, NO2, H2Og, Glyoxal, Ring; ocean: inelastic scattering, water, PFTs; The non-differentisl absorption and scattering is approximated with low order polynomial. The global data set of the four phytoplankton groups is avaiable on a monthly resolution for July 2002 until today.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...