GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (1)
  • 2015-2019  (15)
Keywords
Language
Years
Year
  • 1
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (16 Seiten, 168,82 KB)
    Edition: Version 1.1
    Language: German
    Note: Förderkennzeichen BMBF 01IS13001N. - Verbund-Nummer 01142185 , Kontaktperson ist laut Berichtsblatt Autor , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Mit deutscher und englischer Zusammenfassung
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Hydrothermal circulation at slow-spreading ridges is important for cooling the newly formed lithosphere, but the depth to which it occurs is uncertain. Magmas which stagnate and partially crystallize during their rise from the mantle provide a means to constrain the depth of circulation because assimilation of hydrothermal fluids or hydrothermally altered country rock will raise their chlorine (Cl) contents. Here we present Cl concentrations in combination with chemical thermobarometry data on glassy basaltic rocks and melt inclusions from the Southern Mid-Atlantic Ridge (SMAR; ~ 3 cm year−1 full spreading rate) and the Gakkel Ridge (max. 1.5 cm year−1 full spreading rate) in order to define the depth and extent of chlorine contamination. Basaltic glasses show Cl-contents ranging from ca. 50–430 ppm and ca. 40–700 ppm for the SMAR and Gakkel Ridge, respectively, whereas SMAR melt inclusions contain between 20 and 460 ppm Cl. Compared to elements of similar mantle incompatibility (e.g. K, Nb), Cl-excess (Cl/Nb or Cl/K higher than normal mantle values) of up to 250 ppm in glasses and melt inclusions are found in 75% of the samples from both ridges. Cl-excess is interpreted to indicate assimilation of hydrothermal brines (as opposed to bulk altered rock or seawater) based on the large range of Cl/K ratios in samples showing a limited spread in H2O contents. Resorption and disequilibrium textures of olivine, plagioclase and clinopyroxene phenocrysts and an abundance of xenocrysts and gabbroic fragments in the SMAR lavas suggest multiple generations of crystallization and assimilation of hydrothermally altered rocks that contain these brines. Calculated pressures of last equilibration based on the major element compositions of melts cannot provide reliable estimates of the depths at which this crystallization/assimilation occurred as the assimilation negates the assumption of crystallization under equilibrium conditions implicit in such calculations. Clinopyroxene–melt thermobarometry on rare clinopyroxene phenocrysts present in the SMAR magmas yield lower crustal crystallization/assimilation depths (10–13 km in the segment containing clinopyroxene). The Cl-excesses in SMAR melt inclusions indicate that assimilation occurred before crystallization, while also homogeneous Cl in melts from Gakkel Ridge indicate Cl addition during magma chamber processes. Combined, these observations imply that hydrothermal circulation reaches the lower crust at slow-spreading ridges, and thereby promotes cooling of the lower crust. The generally lower Cl-excess at slow-spreading ridges (compared to fast-spreading ridges) is probably related to them having few if any permanent magma chambers. Magmas therefore do not fractionate as extensively in the crust, providing less heat for assimilation (on average, slow-spreading ridge magmas have higher Mg#), and hydrothermal systems are ephemeral, leading to lower total degrees of crustal alteration and more variation in the amount of Cl contamination. Hydrothermal plumes and vent fields have samples in close vicinity that display Cl-excess, mostly of 〉 25 ppm, which thus can aid as a guide for the exploration of (active or extinct) hydrothermal vent fields on the axis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: The ultramafic-hosted Kairei vent field is located at 25°19′ S, 70°02′ E, towards the Northern end of segment 1 of the Central Indian Ridge (CIR-S1) at a water depth of ~2450 m. This study aims to investigate the distribution of trace elements among sulfide minerals of differing textures and to examine the possible factors controlling the trace element distribution in those minerals using LA-ICP-MS spot and line scan analyses. Our results show that there are distinct systematic differences in trace element distributions throughout the different minerals, as follows: (1) pyrite is divided into three types at Kairei, including early-stage euhedral pyrite (py-I), sub-euhedral pyrite (py-II), and colloform pyrite (py-III). Pyrite is generally enriched with Mo, Au, As, Tl, Mn, and U. Pyrite-I has high contents of Se, Te, Bi, and Ni when compared to the other types; py-II is enriched in Au relative to py-I and py-III, but poor in Ni; py-III is enriched in Mo, Pb, and U but is poor in Se, Te, Bi, and Au relative to py-I and py-II. Variations in the concentrations of Se, Te, and Bi in pyrite are most likely governed by the strong temperature gradient. There is generally a lower concentration of nickel than Co in pyrite, indicating that our samples precipitated at high temperatures, whereas the extreme Co enrichment is likely from a magmatic heat source combined with an influence of serpentinization reactions. (2) Chalcopyrite is characterized by high concentrations of Co, Se, and Te. The abundance of Se and Te in chalcopyrite over the other minerals is interpreted to have been caused by the high solubilities of Se and Te in the chalcopyrite lattice at high temperatures. The concentrations of Sb, As, and Au are relatively low in chalcopyrite from the Kairei vent field. (3) Sphalerite from Zn-rich chimneys is characterized by high concentrations of Sn, Co, Ga, Ge, Ag, Pb, Sb, As, and Cd, but is depleted in Se, Te, Bi, Mo, Au, Ni, Tl, Mn, Ba, V, and U in comparison with the other minerals. The high concentrations of Cd and Co are likely caused by the substitution of Cd2+ and Co2+ for Zn2+ in sphalerite. A high concentration of Pb accompanied by a high Ag concentration in sphalerite indicates that Ag occurs as Pb–Ag sulfosalts. Gold is generally low in sphalerite and strongly correlates with Pb, suggesting its presence in microinclusions of galena. The strong correlation of As with Ge in sphalerite from Kairei suggests that they might precipitate at medium temperatures and under moderately reduced conditions. (4) Bornite–digenite has very low concentrations of most trace elements, except for Co, Se, and Bi. Serpentinization in ultramafic-hosted hydrothermal systems might play an important role in Au enrichment in pyrite with low As contents. Compared to felsic-hosted seafloor massive sulfide deposits, sulfide minerals from ultramafic-hosted deposits show higher concentrations of Se and Te, but lower As, Sb, and Au concentrations, the latter often attributed to the contribution of magmatic volatiles. As with typical ultramafic-hosted seafloor massive sulfide deposits, Se enrichment in chalcopyrite from Kairei indicates that the primary factor that controls the Se enrichment is temperature-controlled mobility in vent fluids.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: The distribution of trace ore elements in different paragenetic stages of pyrite has been documented for the first time in the sub-seafloor of the actively-forming TAG massive sulfide deposit. Trace element distributions have been determined by in-situ laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) of pyrite formed at different stages of mineralization, and at different temperatures constrained by previously published fluid inclusion analyses. The data reveal a strong dependence on paragenetic stage, with distinct low- and high-temperature enrichments. Porous pyrite (and marcasite) formed at low temperatures (〈300 °C) in the outer margins of the deposit is enriched in As, Ag, Tl, Pb, Sb, Mo, W, Zn, Ga, Ge, Cd, In, Te, Au, Mn, V, and U. Coarse-grained pyrite formed at higher temperatures (〉350 °C) at the base of the hydrothermal mound and in the stockwork zone is enriched in Co, Se, Bi, Cu, Ni, and Sn. A number of different sub-types of pyrite also have characteristic trace element signatures; e.g., the earliest pyrite formed at the highest temperatures is always enriched in Co and Se compared to later stages. Ablation profiles for Co, Se, and Ni are smooth and indicate that these elements are present mainly in lattice substitutions rather than as inclusions of other sulfides. Profiles for As, Sb, Tl, and Cu can be either irregular or smooth, indicating both lattice substitutions and inclusions. Lead and Ag have mostly smooth profiles, but because Pb cannot substitute directly into the pyrite lattice, it is interpreted to be present as homogeneously distributed micro- or nano-scale particles. The behavior of the different trace elements mainly reflects their aqueous speciation in the hydrothermal fluids at different temperatures, and for some elements like Co and Se, strong partitioning into the pyrite lattice at elevated temperatures. Adsorption onto pyrite surfaces controls the distribution of a number of redox-sensitive elements (i.e., Mo, V, Ni, U), particularly in the upper part of the mound which is infiltrated by cold seawater. Where micro- or nano-scale inclusions of chalcopyrite, sphalerite, galena, or sulfosalts are present, there is still a strong temperature dependence on the inclusion population (e.g., more abundant chalcopyrite in the highest-temperature pyrite), suggesting that the inclusions were co-precipitated with pyrite rather than overgrown. However, at the deposit scale, the trace element distributions are also strongly controlled by remobilization and chemical zone refining, as previously documented in bulk geochemical profiles. The results show that pyrite chemistry is a remarkably good model of the chemistry of the entire hydrothermal system. For many trace elements, the concentrations in pyrite are highly predictive in terms of the conditions of mineral formation over a wide range of temperatures, from the stockwork zone to the cooler outer margins of the deposit. Calculated minimum concentrations of the trace elements in the fluids needed to account for the observed concentrations in pyrite show good agreement with measured vent fluid concentrations, particularly Pb, As, Mo, Ag, and Tl. However, significantly higher concentrations are indicated for Co (and Se) than have been measured in sampled fluids, confirming the strong partitioning of these elements into high-temperature pyrite.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: Highlights • First present seafloor hydrothermal mineralization processes at both Wocan-1 and Wocan-2 on the slow-spreading Carlsberg Ridge. • The Cu-rich chimneys were formed at slightly lower temperatures than Cu-rich and Fe-rich massive sulfides. • The main Ag-carriers were both late-stage Cu sulfides and Fe sulfides, which deposited under low temperatures and oxidized conditions. • Fluid mixing of hydrothermal fluids with seawater might result in significant redistributions of trace metal elements in sulfides. Abstract The basalt-hosted Wocan hydrothermal field (WHF), located on the NW slope of an axial volcanic ridge in a depth of ∼3000 m at 6°22′N on the slow-spreading Carlsberg Ridge, northwest Indian Ocean, was discovered in 2013 during Chinese DY28th cruise. Preliminary investigations show that the field consists of two hydrothermal sites: Wocan-1, which shows indications for recent high-temperature hydrothermal activity, is located near the peak of the axial volcanic ridge in a water depth of 2970-2990 m, and the inactive Wocan-2 site, located at a water depth of 3100 m, ∼1.7 km to the northwest of Wocan-1. The recovered hydrothermal precipitates can be classified into four groups: (i) Cu-rich chimneys; (ii) Cu-rich massive sulfides; (iii) Fe-rich massive sulfides; and (iv) silicified massive sulfides. We conducted mineral texture and assemblage observation and Laser-ablation ICP-MS analyses of the hydrothermal precipitates to study the mineralization processes. Our results show that there are distinct systematic trace element distributions throughout the different minerals in the four sample groups. In general, chalcopyrite from the group (i) is enriched in Pb, As, Mo, Ga, Ge, V, and Sb, metals that are commonly referred to as medium- to low-temperature elements. In contrast these elements are present in low contents in the chalcopyrite grains from other sample groups. Selenium, a typical high-temperature metal, is enriched in chalcopyrite from groups (ii) and (iv), whereas Ag and Sn are enriched only in some silicified massive sulfides. As with chalcopyrite, pyrite also shows distinct trace element associations in grains with different habitus. The low-temperature association of elements (Pb, Mo, Mn, U, Mg, Ag, and Tl) is typically present in colloform/framboidal pyrite, whereas the high-temperature association (Se, Co, and Bi) is enriched in euhedral pyrite. Sphalerite in the groups (i) and (iii) at Wocan-1 is characterized by high concentrations of Ga, Ge, Pb, Cd, As, and Sb, indicating that sphalerite in these sample groups likely precipitated at intermediate temperatures. Early bornite, which mainly occurs in the central part of the Cu-rich chimney, is typically enriched in Sn and In compared to the other minerals. In contrast, late bornite that likely formed during increasing interaction of hydrothermal fluids with cold, oxygenated seawater has low Sn and In, but significantly higher concentrations of Ag, Au, Mo and U. Digenite, also forming in the exterior parts of the samples during the late stages of hydrothermal fluid venting, is poor in most trace elements, except Ag and U. The notable Ag enrichment in the late-stage mineral assemblages at both Wocan-1 and Wocan-2 may therefore be related to lower temperatures and elevated pH. Our results indicate that Wocan-1 has experienced a cycle of heating with Cu-rich chimney growth and subsequent cooling, followed by late seafloor weathering, while Wocan-2 has seen intermediate- to high-temperature mineralization followed by intense silicification of sulfides. Seafloor weathering processes or mixing of hydrothermal fluids with seawater during the waning stages of hydrothermal fluid flow result in significant redistributions of trace elements in sulfide minerals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Royal Society of Chemistry
    In:  Journal of Analytical Atomic Spectrometry, 31 (1). pp. 234-244.
    Publication Date: 2019-02-01
    Description: Matrix effects are one of the frequently observed and discussed issues challenging the accuracy of LA-ICP-MS results. The specific role of the ICP as a source of elemental fractionation seems not fully understood. We report the results of an experiment using six internationally available reference materials (five silicates, one carbonate) measured under 11 different plasma conditions. The thermal/energetic state of the plasma was estimated based on the ratio of Ar-38(+) and Ar-40(2)+ ions. We show that element specific behavior (volatile vs. refractory) dominates at cool but vanishes under hot plasma conditions. For robust (hot) plasma conditions matrix-tolerance seems to be achieved. Additionally we address the problem of matrix-load with respect to the plasma conditions. We've estimated practical limits for the amount of matrix which can be introduced into the ICP without significantly changing the plasma conditions
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Hydrothermal vent deposits form on the seafloor as a result of cooling and mixing of hot hydrothermal fluids with cold seawater. Amongst the major sulfide and sulfate minerals that are preserved at vent sites, barite (BaSO4) is unique because it requires the direct mixing of Ba-rich hydrothermal fluid with sulfate-rich seawater in order for precipitation to occur. Because of its extremely low solubility, barite crystals preserve geochemical fingerprints associated with conditions of formation. Here, we present data from petrographic and geochemical analyses of hydrothermal barite from the Endeavour Segment of the Juan de Fuca Ridge, northeast Pacific Ocean, in order to determine the physical and chemical conditions under which barite precipitates within seafloor hydrothermal vent systems. Petrographic analyses of 22 barite-rich samples show a range of barite crystal morphologies: dendritic and acicular barite forms near the exterior vent walls, whereas larger bladed and tabular crystals occur within the interior of chimneys. A two component mixing model based on Sr concentrations and 87Sr/86Sr of both seawater and hydrothermal fluid, combined with 87Sr/86Sr data from whole rock and laser-ablation ICP-MS analyses of barite crystals indicate that barite precipitates from mixtures containing as low as 17% and as high as 88% hydrothermal fluid component, relative to seawater. Geochemical modelling of the relationship between aqueous species concentrations and degree of fluid mixing indicates that Ba2+ availability is the dominant control on mineral saturation. Observations combined with model results support that dendritic barite forms from fluids of less than 40% hydrothermal component and with a saturation index greater than ∼0.6, whereas more euhedral crystals form at lower levels of supersaturation associated with greater contributions of hydrothermal fluid. Fluid inclusions within barite indicate formation temperatures of between ∼120 °C and 240 °C during barite crystallization. The comparison of fluid inclusion formation temperatures to modelled mixing temperatures indicates that conductive cooling of the vent fluid accounts for 60–120 °C reduction in fluid temperature. Strontium zonation within individual barite crystals records fluctuations in the amount of conductive cooling within chimney walls that may result from cyclical oscillations in hydrothermal fluid flux. Barite chemistry and morphology can be used as a reliable indicator for past conditions of mineralization within both extinct seafloor hydrothermal deposits and ancient land-based volcanogenic massive sulfide deposits.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Highlights • Subplinian to Plinian eruptions from Cocos Island • Tectonically controlled melt ascent • Ocean island evolution without passing typical growth stages Abstract We report a series of fourteen marine tephra layers that are the products of large explosive eruptions of Subplinian to Plinian intensities and magnitudes (VEI 〉 4) from Cocos Island, Costa Rica. Cocos Island is a volcanic island in the eastern Central Pacific Ocean ~ 500 km offshore Costa Rica, and is situated on the northwestern flank of the aseismic Cocos Ridge. Geochemical fingerprinting of Pleistocene (~ 2.4–1.4 Ma) marine tephra layers from Ocean Drilling Project (ODP) Leg 202 Site 1241 using major and trace element compositions of volcanic glass shards demonstrates unequivocally their origin from Cocos Island rather than the Galápagos Archipelago or the Central American Volcanic Arc (CAVA). Cocos Island and the adjacent seamounts of the Cocos Island Province have alkalic compositions and formed on young (≤ 3 Ma) oceanic crust from an extinct spreading ridge bounded by a transform fault against the older and thicker crust of the aseismic Cocos Ridge. Cocos Island has six times the average volume of the adjacent seamounts although all appear to have formed during the 3–1.4 Ma time period. Cocos Island lies closest to the transform fault and we explain its excessive growth by melts rising from garnet-bearing mantle being deflected from the thick Cocos Ridge lithosphere toward the thinner lithosphere on the other side of the transform, thus enlarging the melt catchment area for Cocos Island compared to the seamounts farther away from the transform. This special setting favored growth above sea level and subaerial explosive eruptions even though the absence of appropriate compositions suggests that the entirely alkalic Cocos Island (and seamounts) never evolved through the productive tholeiitic shield stage typical of other Pacific Ocean islands, possibly because melt production rates remained too small. Conditions of magma generation and ascent resembled Hawaiian pre-shield volcanoes but persisted for much longer (〈 1 m.y.) and formed evolved, trachytic magmas. Therefore Cocos Island may be a unique example for a volcanic ocean island that did not pass through the typical growth stages.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-12-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-09-11
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...