GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-01
    Description: The long-wave dynamics of the Lombok Strait, which is the most important link of the West Indonesian throughflow connecting the Pacific and Indian Ocean waters, was simulated and analyzed. A feature of the strait is its extremely complex relief, on which water transport creates a field of pronounced vertical velocities, which requires consideration of the nonhydrostatic component of pressure. The work presents a 3-D nonhydrostatic model in curvilinear coordinates, which is verified on a test problem. Particular attention is paid to the method of solving the 3-D elliptical solver for a nonhydrostatic problem in boundary-matched coordinates and a vertical σ level. The difference in transport through the Lombok Strait is determined by the difference in atmospheric pressure over the Pacific and Indian Oceans. Based on the results of the global simulation, the role of these factors in terms of their variability is analyzed, and the value of nonhydrostatic pressure in the dynamics of the Lombok Strait is revealed and evaluated. The vertical dynamics of the Lombok Strait are considered in detail based on hydrostatic and nonhydrostatic approaches.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-11
    Description: Ocean bottom pressure (OBP) variability serves as a proxy of ocean mass variability, the knowledge of which is needed in geophysical applications. The question of how well it can be modeled by the present general ocean circulation models on time scales in excess of one day is addressed here by comparing the simulated OBP variability with the observed one. To this end, a new multi-year data set is used, obtained with an array of bottom pressure gauges deployed deeply along a transect across the Southern Ocean. We present a brief description of OBP data and show large scale correlations over several thousand kilometres at all time scales red using daily and monthly averaged data. Annual and semi-annual cycles are weak. Close to the Agulhas Retroflection, signals of up to 30 cm equivalent water height (EWH) are detected. Further south, signals are mostly intermittent and noisy. It is shown that the models simulate consistent patterns of bottom pressure variability on monthly and longer scales except for areas with high mesoscale eddy activity, where high resolution is needed to capture the variability due to eddies. Furthermore, despite good agreement in the amplitude of variability, the in situ and simulated OBP show almost no correlation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-22
    Description: Monitoring changes in eukaryotic microbial communities is critical for understanding ecosystem dynamics, trophic interactions and the impacts of climate change. Long-term time series are an important tool for monitoring changes in ecological communities, but time series from a single location may not be representative of regional dynamics. In the German Bight, the Helgoland Roads time series is such a long-term series. Here, we consider the spatial dynamics of the eukaryotic microbes as an indicator of the representativeness of the Helgoland Roads site for the coastal German Bight, which is located in the North Sea. The eukaryotic microbial community in the German Bight was analysed at Helgoland Roads and two coastal stations (Cuxhaven and Wilhelmshaven) between March and October 2016 using metabarcoding. In addition, an oceanographical model was used to check for potential hydrological connectivity between the stations during the sampling period. Our results showed that the communities were different at the three stations. Helgoland was dominated by dinoflagellates, whereas the coastal stations had more diverse communities. Furthermore, differences were observed in the dinoflagellate and diatom communities between the three stations. Lagrangian particle tracking applied to the model results, showed limited connectivity between Helgoland and the coastal stations in 2016. The differences between Helgoland and the coastal stations were correlated with the different hydrological regimes and associated nutrient contents. Our observations suggest the presence of different eukaryotic microbial communities separated by complex hydrological conditions in the coastal German Bight.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-15
    Description: A newly developed coastal model, FESOM-C, based on three-dimensional unstructured meshes and finite volume, is applied to simulate the dynamics of the southeastern North Sea. Variable horizontal resolution enables coarse meshes in the open sea with refined meshes in shallow areas including the Wadden Sea and estuaries to resolve important small-scale processes such as wetting and drying, sub-mesoscale eddies, and the dynamics of steep coastal fronts. Model results for a simulation of the period from January 2010 to December 2014 agree reasonably well with data from numerous regional autonomous observation stations with high temporal and spatial resolutions, as well as with data from FerryBoxes and glider expeditions. Analyzing numerical solution convergence on meshes of different horizontal resolutions allows us to identify areas where high mesh resolution (wetting and drying zones and shallow areas) and low mesh resolution (open boundary, open sea, and deep regions) are optimal for numerical simulations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-26
    Description: The current study provides a new test case for the coastal numerical solutions dedicated to the plume spreading in the estuary and on the shelf. The suggested estuary-shelf system represents a mixture between pronounced nonlinear flow dynamics with sharp frontal boundaries and linear dynamics and across-shore geostrophic balance. The major aspects of the plume dynamics are analytically predicted, but are difficult to reproduce numerically. The test case manifests the level of numerical diffusion, ability of the model to reproduce the nonlinear processes and frontal zone dynamics. Numerical solutions were obtained with three unstructured mesh models SCHISM, THETIS and FESOM-C. The current study also suggests the plume spreading analysis based on numerical results, which can be useful for any intercomparison studies with focus on the plume behavior.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-09-24
    Description: Ocean bottom pressure (OBP) variability serves as a proxy of ocean mass variability, the knowledge of which is needed in geophysical applications. The question of how well it can be modeled by the present general ocean circulation models on time scales in excess of 1 day is addressed here by comparing the simulated OBP variability with the observed one. To this end, a new multiyear data set is used, obtained with an array of bottom pressure gauges deployed deeply along a transect across the Southern Ocean. We present a brief description of OBP data and show large-scale correlations over several thousand kilometers at all time scales using daily and monthly averaged data. Annual and semiannual cycles are weak. Close to the Agulhas Retroflection, signals of up to 30 cm equivalent water height are detected. Further south, signals are mostly intermittent and noisy. It is shown that the models simulate consistent patterns of bottom pressure variability on monthly and longer scales except for areas with high mesoscale eddy activity, where high resolution is needed to capture the variability due to eddies. Furthermore, despite good agreement in the amplitude of variability, the in situ and simulated OBP show only modest correlation.
    Keywords: 551.46 ; in situ ocean bottom pressure ; pressure inverted echo sounder PIES ; modeling OBP variability ; daily and monthly scales ; atmospheric loading
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-31
    Description: The City of Venice and the surrounding lagoonal ecosystem are highly vulnerable to variations in relative sea level. In the past ~150 years, this was characterized by a secular linear trend of about 2.5 mm/year resulting from the combined contributions of vertical land movement and sea-level rise. This literature review reassesses and synthesizes the progress achieved in understanding, estimating and predicting the individual contributions to local relative sea level, with focus on the most recent publications. The current best estimate of historical sea-level rise in Venice, based on tide-gauge data after removal of subsidence effects, is 1.23 ± 0.13 mm/year (period from 1872 to 2019). Subsidence thus contributed to about half of the observed relative sea-level rise over the same period. A higher – yet more uncertain – rate of sea-level rise is observed during recent decades, estimated from tide-gauge data to be about 2.76 ± 1.75 mm/year in the period 1993–2019 for the climatic component alone. An unresolved issue is the contrast between the observational capacity of tide gauges and satellite altimetry, with the latter tool not covering the Venice Lagoon. Water mass exchanges through the Gibraltar Strait currently constitute a source of substantial uncertainty for estimating future deviations of the Mediterranean mean sea-level trend from the global-mean value. Subsidence and regional atmospheric and oceanic circulation mechanisms can deviate Venetian relative sea-level trends from the global mean values for several decades. Regional processes will likely continue to determine significant interannual and interdecadal variability of Venetian sea level with magnitude comparable to that observed in the past, as well as non-negligible differential trends. Our estimate of the likely range of mean sea-level rise in Venice by 2100 due to climate change is presently estimated between 11 and 110 centimetres. An improbable yet possible high-end scenario linked to strong ice-sheet melting yields about 170 centimetres of mean sea-level rise in Venice by 2100. Projections of natural and human induced vertical land motions are currently not available, but historical evidence demonstrates that they can produce a significant contribution to the relative sea-level rise in Venice, further increasing the hazard posed by climatically-induced sea-level changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-05
    Description: Using the depth (z) and density (ϱ) frameworks, we analyze local contributions to AMOC variability in a 900-year simulation with the AWI climate model. Both frameworks reveal a consistent interdecadal variability; however, the correlation between their maxima deteriorates on year-to-year scales. We demonstrate the utility of analyzing the spatial patterns of sinking and diapycnal transformations through depth levels and isopycnals. The success of this analysis relies on the spatial binning of these maps which is especially crucial for the maps of vertical velocities which appear to be too noisy in the main regions of up- and downwelling because of stepwise bottom topography. Furthermore, we show that the AMOC responds to fast (annual or faster) fluctuations in atmospheric forcing associated with the NAO. This response is more obvious in the ϱ than in the z framework. In contrast, the link between AMOC deep water production south of Greenland is found for slower fluctuations and is consistent between the frameworks.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-12-28
    Description: State of the art tsunami warning systems employ a combined approach of pre-computed scenarios and on the fly tsunami simulation in case of an event. The on the fly simulations are performed on rather coarse meshes (approx. 1km resolution), usually neglect e.g., the non-linear advection in the shallow water equations, and can deliver a reasonable estimate of the wave height at the coast within a few seconds of computation time. As in the early warning situation, the earthquake source is the major unknown, they can improve the hazard assessment compared to pre-computed scenarios based on idealized sources. On the other hand, it requires a resolution of approximately 10m on land and the non-linear shallow water equations augmented by terms like the bottom roughness to simulate the inundation in the quality needed to derive risk maps for civil protection measures. With the simulation code TsunAWI, which employs an unstructured triangular mesh to seamlessly change the spatial resolution from a few meters in an area of interest to a few kilometers in the deep ocean, such simulations can be performed with a regional focus in less than 20min computation time. Hence, with a coarsened resolution, a first estimate of the inundation could be provided within a few minutes, improving the near-realtime assessment of the hazard. We investigate which quality of inundation result can be achieved within a limited computation time, regarding computing platforms based on various generations of Intel Xeon from Broadwell to Cascade Lake. This investigation is part of the EU funded LEXIS project lead by It4Innovations, Ostrava, Czech Republic. The overall aim is to build an advanced engineering platform at the confluence of HPC, Cloud and Big Data. Of particular interest is the development of time constrained workflows over HPC and cloud resources, with a pilot combining tsunami simulations and earthquake damage assessment. Fast tsunami inundation estimates are a key element of that pilot.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...