GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Type of Medium: Book
    Pages: III S., S. 4711 - 4886 , zahlr. graph. Darst., Kt.
    Series Statement: Deep-sea research 49,21
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Impact of West Antarctic Ice Shelf melting on the Southern Ocean Hydrography, Cryosphere, COPERNICUS GESELLSCHAFT MBH, ISSN: 1994-0416
    Publication Date: 2020-07-08
    Description: Previous studies show accelerations of West Antarctic glaciers, implying that basal melt rates of these glaciers were previously small and increased in the middle of the 20th century. This enhanced melting is a likely source of the observed Ross Sea (RS) freshening, but its long-term impact on the Southern Ocean hydrography has never been investigated. Here, we conduct coupled sea-ice/ice-shelf/ocean simulations with different levels of ice shelf melting from West Antarctic glaciers. Freshening of RS shelf and bottom water is simulated with enhanced West Antarctic ice shelf melting, while no significant changes in shelf water properties are simulated when West Antarctic ice shelf melting is small. We further show that the freshening caused by glacial meltwater from ice shelves in the Amundsen and Bellingshausen Seas propagates further downstream along the East Antarctic coast into the Weddell Sea. Our experiments also show the timescales for the freshening signal to reach other regions around the Antarctic continent. The freshening signal propagates onto the RS continental shelf within a year of model simulation, while it takes roughly 5–10 years and 10–15 years to propagate into the region off Cape Darnley and into the Weddell Sea, respectively. This advection of freshening signal} possibly modulates the properties of dense shelf water and impacts the production of Antarctic Bottom Water.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Drifting icebergs represent a significant hazard for polar navigation and are able to impact the ocean environment around them. Freshwater flux and the associated cooling from melting icebergs can locally decrease salinity and temperature and thus affect ocean circulation, biological activity, sea ice, and –on larger spatial scales– the whole climate system. However, despite their potential impact, the large-scale operational monitoring of drifting icebergs in sea ice-covered regions is as of today typically restricted to giant icebergs, larger than 18.5 km in length. This is due to difficulties in accurately identifying and following the motion of much smaller features in the polar ocean from space. So far, tracking of smaller icebergs from satellite imagery thus has been limited to open-ocean regions not covered by sea ice. In this study, a novel automated iceberg tracking method, based on a machine learning-approach for automatic iceberg detection, is presented. To demonstrate the applicability of the method, a case study was performed for the Weddell Sea region, Antarctica, using 1213 Advanced Synthetic Aperture Radar (ASAR) satellite images acquired between 2002 and 2011. Overall, a subset of 414 icebergs (3134 re-detections in total) with surface areas between 3.4 km² and 3612 km² were investigated with respect to their prevalent drift patterns, size variability, and average disintegration. The majority of the tracked icebergs drifted between 1.3 km and 2679.2 km westward around the Antarctic continent, following the Antarctic Coastal Current (ACoC) and the Weddell Gyre, at an average drift speed of 3.6 ± 7.4 km day⁻¹. The method also allowed us to estimate an average daily disintegration (i.e. iceberg area decrease) rate of ~0.13% (~37% year⁻¹) for all icebergs. Using the sum of all detected individual surface area reductions, we estimate a total iceberg mass decrease of ~683 Gt year⁻¹, which can be freshwater input and/or new ‘child’ icebergs calved from larger icebergs. The extension to an automated long-term tracking method for icebergs is challenging as the iceberg shape can vary significantly due to abrupt disintegration or calving of bergy bits. However, our machine learning approach extended by automatic shape-based tracking capabilities proved to be a reliable alternative for automatic detection and tracking of icebergs, even under the ambiguous SAR background signatures often found in the Southern Ocean. In particular, the method works in the challenging near-coastal environment where the presence of sea ice and coastal ocean dynamics such as surface waves usually pose major obstacles for other approaches.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Expeditionsprogramm Polarstern, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 51 p.
    Publication Date: 2020-11-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: Expedition program , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-09
    Description: Despite ongoing global warming and strong sea ice decline in the Arctic, the sea ice extent around the Antarctic continent has not declined during the satellite era since 1979. This is in stark contrast to existing climate models that tend to show a strong negative sea ice trend for the same period; hence the confidence in projected Antarctic sea-ice changes is considered to be low. In the years since 2016, there has been significantly lower Antarctic sea ice extent, which some consider a sign of imminent change; however, others have argued that sea ice extent is expected to regress to the weak decadal trend in the near future. In this presentation, we show results from climate change projections with a new climate model that allows the simulation of mesoscale eddies in dynamically active ocean regions in a computationally efficient way. We find that the high-resolution configuration (HR) favours periods of stable Antarctic sea ice extent in September as observed over the satellite era. Sea ice is not projected to decline well into the 21st century in the HR simulations, which is similar to the delaying effect of, e.g., added glacial melt water in recent studies. The HR ocean configurations simulate an ocean heat transport that responds differently to global warming and is more efficient at moderating the anthropogenic warming of the Southern Ocean. As a consequence, decrease of Antarctic sea ice extent is significantly delayed, in contrast to what existing coarser-resolution climate models predict. Other explanations why current models simulate a non-observed decline of Antarctic sea-ice have been put forward, including the choice of included sea ice physics and underestimated simulated trends in westerly winds. Our results provide an alternative mechanism that might be strong enough to explain the gap between modeled and observed trends alone.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-07-07
    Description: The Filchner-Ronne Ice Shelf, fringing the southern Weddell Sea, is Antarctica's second largest ice shelf. At present, basal melt rates are low due to active dense water formation; however, model projections suggest a drastic increase in the future due to enhanced inflow of open-ocean warm water. Mooring observations from 2014 to 2016 along the eastern flank of the Filchner Trough (76°S) revealed a distinct seasonal cycle with inflow of Warm Deep Water during summer and autumn. Here we present extended time series showing an exceptionally warm and long inflow in 2017, with maximum temperatures exceeding 0.5°C. Warm temperatures persisted throughout winter, associated with a fresh anomaly, which lead to a change in stratification over the shelf, favoring an earlier inflow in the following summer. We suggest that the fresh anomaly developed upstream after anomalous summer sea ice melting and contributed to a shoaling of the shelf break thermocline.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-16
    Description: Floating ice shelves are the Achilles’ heel of the Antarctic Ice Sheet. They limit Antarctica’s contribution to global sea level rise, yet they can be rapidly melted from beneath by a warming ocean. At Filchner-Ronne Ice Shelf, a decline in sea ice formation may increase basal melt rates and accelerate marine ice sheet mass loss within this century. However, the understanding of this tipping-point behavior largely relies on numerical models. Our new multi-annual observations from five hot-water drilled boreholes through Filchner-Ronne Ice Shelf show that since 2015 there has been an intensification of the density-driven ice shelf cavity-wide circulation in response to reinforced wind-driven sea ice formation in the Ronne polynya. Enhanced southerly winds over Ronne Ice Shelf coincide with westward displacements of the Amundsen Sea Low position, connecting the cavity circulation with changes in large-scale atmospheric circulation patterns as a new aspect of the atmosphere-ocean-ice shelf system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-16
    Description: The Filchner-Ronne Ice Shelf (FRIS) is characterized by moderate basal melt rates due to the near-freezing waters that dominate the wide southern Weddell Sea continental shelf. We revisited the region in austral summer 2018 with detailed hydrographic and noble gas surveys along FRIS. The FRIS front was characterized by High Salinity Shelf Water (HSSW) in Ronne Depression, Ice Shelf Water (ISW) on its eastern flank, and an inflow of modified Warm Deep Water (mWDW) entering through Central Trough. Filchner Trough was dominated by Ronne HSSW-sourced ISW, likely forced by a recently intensified circulation beneath FRIS due to enhanced sea ice production in the Ronne polynya since 2015. Glacial meltwater fractions and tracer-based water mass dating indicate two separate ISW outflow cores, one hugging the Berkner slope after a two-year travel time, and the other located in the central Filchner Trough following a ∼six year-long transit through the FRIS cavity. Historical measurements indicate the presence of two distinct modes, in which water masses in Filchner Trough were dominated by either Ronne HSSW-derived ISW (Ronne-mode) or more locally derived Berkner-HSSW (Berkner-mode). While the dominance of these modes has alternated on interannual time scales, ocean densities in Filchner Trough have remained remarkably stable since the first surveys in 1980. Indeed, geostrophic velocities indicated outflowing ISW-cores along the trough's western flank and onto Berkner Bank, which suggests that Ronne-ISW preconditions Berkner-HSSW production. The negligible density difference between Berkner- and Ronne-mode waters indicates that each contributes cold dense shelf waters to protect FRIS against inflowing mWDW.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC3Geophysical Research Letters, 28(15), pp. 2927-2930, ISSN: 0094-8276
    Publication Date: 2019-07-16
    Description: The importance of deep and bottom water formed in the Southern Ocean to the ventilation of theworld ocean abyss has been accepted by the oceanographic community. Uncertainties, however,exist about rate and exact location of dense water mass sinking around Antarctica. Based on watermass analysis, the Weddell Sea in the Atlantic sector has long been identified as being the majorsource for bottom water. The contribution of the Ross Sea in the western Pacific sector, althoughwith similar if not more favorable ingredients for dense bottom water formation, seemed to be minor.Observations and recent tracer analysis indicate that the Indian-Pacific sector might host sourceswhich together can compete with their Atlantic counterpart. Our numerical model results support asplitting of the Atlantic and Indian-Pacific contributions into roughly equal parts but for bottomwaters of different density. The observationally derived formation rate for dense Antarctic BottomWater on the order of 10 Sv (1 Sv = 10^6 m^3/s) is confirmed but doubles if the lighter componentof the Indian-Pacific sector is included. This places southern and northern hemisphere sources asequal contributors to the ventilation of the world ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3Eiskalte Entdeckungen : Forschungsreisen zwischen Nord- und Südpol / hrsg. von Gert Lange. Mit fünf künstlerischen Fotogr. von Britta Lauer. Bielefeld : Delius Klasing, pp. 93-96, ISBN: 3-7688-1257-X
    Publication Date: 2014-04-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...